CDPNet: a radiomic feature learning method with epigenetic application to estimating MGMT promoter methylation status in glioblastoma.

Jun Guo, Fanyang Yu, MacLean P Nasrallah, Christos Davatzikos
{"title":"CDPNet: a radiomic feature learning method with epigenetic application to estimating MGMT promoter methylation status in glioblastoma.","authors":"Jun Guo, Fanyang Yu, MacLean P Nasrallah, Christos Davatzikos","doi":"10.1117/12.3009716","DOIUrl":null,"url":null,"abstract":"<p><p>Radiomics has been widely recognized for its effectiveness in decoding tumor phenotypes through the extraction of quantitative imaging features. However, the robustness of radiomic methods to estimate clinically relevant biomarkers non-invasively remains largely untested. In this study, we propose Cascaded Data Processing Network (CDPNet), a radiomic feature learning method to predict tumor molecular status from medical images. We apply CDPNet to an epigenetic case, specifically targeting the estimation of <i>O6-methylguanine-DNA-methyltransferase</i> (<i>MGMT</i>) promoter methylation from Magnetic Resonance Imaging (MRI) scans of glioblastoma patients. CDPNet has three components: 1) Principal Component Analysis (PCA), 2) Fisher Linear Discriminant (FLD), and 3) a combination of hashing and blockwise histograms. The outlined architectural framework capitalizes on PCA to reconstruct input image patches, followed by FLD to extract discriminative filter banks, and finally using binary hashing and blockwise histogram module for indexing, pooling, and feature generation. To validate the effectiveness of CDPNet, we conducted an exhaustive evaluation on a comprehensive retrospective cohort comprising 484 <i>IDH</i>-wildtype glioblastoma patients with pre-operative multi-parametric MRI scans (T1, T1-Gd, T2, and T2-FLAIR). The prediction of <i>MGMT</i> promoter methylation status was cast as a binary classification problem. The developed model underwent rigorous training via 10-fold cross-validation on a discovery cohort of 446 patients. Subsequently, the model's performance was evaluated on a distinct and previously unseen replication cohort of 38 patients. Our method achieved an accuracy of 70.11% and an area under the curve of 0.71 (95% CI: 0.65 - 0.74).</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12930 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11034757/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3009716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Radiomics has been widely recognized for its effectiveness in decoding tumor phenotypes through the extraction of quantitative imaging features. However, the robustness of radiomic methods to estimate clinically relevant biomarkers non-invasively remains largely untested. In this study, we propose Cascaded Data Processing Network (CDPNet), a radiomic feature learning method to predict tumor molecular status from medical images. We apply CDPNet to an epigenetic case, specifically targeting the estimation of O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation from Magnetic Resonance Imaging (MRI) scans of glioblastoma patients. CDPNet has three components: 1) Principal Component Analysis (PCA), 2) Fisher Linear Discriminant (FLD), and 3) a combination of hashing and blockwise histograms. The outlined architectural framework capitalizes on PCA to reconstruct input image patches, followed by FLD to extract discriminative filter banks, and finally using binary hashing and blockwise histogram module for indexing, pooling, and feature generation. To validate the effectiveness of CDPNet, we conducted an exhaustive evaluation on a comprehensive retrospective cohort comprising 484 IDH-wildtype glioblastoma patients with pre-operative multi-parametric MRI scans (T1, T1-Gd, T2, and T2-FLAIR). The prediction of MGMT promoter methylation status was cast as a binary classification problem. The developed model underwent rigorous training via 10-fold cross-validation on a discovery cohort of 446 patients. Subsequently, the model's performance was evaluated on a distinct and previously unseen replication cohort of 38 patients. Our method achieved an accuracy of 70.11% and an area under the curve of 0.71 (95% CI: 0.65 - 0.74).

CDPNet:一种应用于胶质母细胞瘤 MGMT 启动子甲基化状态的放射学特征学习方法。
放射组学在通过提取定量成像特征解码肿瘤表型方面的有效性已得到广泛认可。然而,放射组学方法在无创估算临床相关生物标记物方面的稳健性在很大程度上仍未得到验证。在本研究中,我们提出了级联数据处理网络(CDPNet)--一种从医学影像中预测肿瘤分子状态的放射学特征学习方法。我们将 CDPNet 应用于表观遗传学案例,特别是针对从胶质母细胞瘤患者的磁共振成像(MRI)扫描中估算 O6-甲基鸟嘌呤-DNA-甲基转移酶(MGMT)启动子甲基化。CDPNet 有三个组成部分:1) 主成分分析 (PCA);2) 费雪线性判别 (FLD);3) 散列和顺时针直方图组合。概述的架构框架利用 PCA 重构输入图像片段,然后利用 FLD 提取判别滤波器组,最后利用二进制散列和顺时针直方图模块进行索引、汇集和特征生成。为了验证 CDPNet 的有效性,我们对 484 例 IDH 野生型胶质母细胞瘤患者的术前多参数 MRI 扫描(T1、T1-Gd、T2 和 T2-FLAIR)进行了全面的回顾性队列评估。MGMT 启动子甲基化状态的预测是一个二元分类问题。开发的模型在 446 例患者的发现队列中进行了 10 倍交叉验证的严格训练。随后,该模型的性能在一个独特的、以前未见过的由 38 名患者组成的复制队列中进行了评估。我们的方法准确率达到 70.11%,曲线下面积为 0.71(95% CI:0.65 - 0.74)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信