ExplaineR: an R package to explain machine learning models.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2024-03-26 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae049
Ramtin Zargari Marandi
{"title":"ExplaineR: an R package to explain machine learning models.","authors":"Ramtin Zargari Marandi","doi":"10.1093/bioadv/vbae049","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>SHapley Additive exPlanations (SHAP) is a widely used method for model interpretation. However, its full potential often remains untapped due to the absence of dedicated software tools. In response, <i>ExplaineR</i>, an R package to facilitate interpretation of binary classification and regression models based on clustering functionality for SHAP analysis is introduced here. It additionally offers user-interactive elements in visualizations for evaluating model performance, fairness analysis, decision-curve analysis, and a diverse range of SHAP plots. It facilitates in-depth post-prediction analysis of models, enabling users to pinpoint potentially significant patterns in SHAP plots and subsequently trace them back to instances through SHAP clustering. This functionality is particularly valuable for identifying patient subgroups in clinical cohorts, thus enhancing its role as a robust profiling tool. <i>ExplaineR</i> empowers users to generate comprehensive reports on machine learning outcomes, ensuring consistent and thorough documentation of model performance and interpretations.</p><p><strong>Availability and implementation: </strong><i>ExplaineR</i> 1.0.0 is available on GitHub (https://persimune.github.io/explainer/) and CRAN (https://cran.r-project.org/web/packages/explainer/index.html).</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae049"},"PeriodicalIF":2.4000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10994716/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: SHapley Additive exPlanations (SHAP) is a widely used method for model interpretation. However, its full potential often remains untapped due to the absence of dedicated software tools. In response, ExplaineR, an R package to facilitate interpretation of binary classification and regression models based on clustering functionality for SHAP analysis is introduced here. It additionally offers user-interactive elements in visualizations for evaluating model performance, fairness analysis, decision-curve analysis, and a diverse range of SHAP plots. It facilitates in-depth post-prediction analysis of models, enabling users to pinpoint potentially significant patterns in SHAP plots and subsequently trace them back to instances through SHAP clustering. This functionality is particularly valuable for identifying patient subgroups in clinical cohorts, thus enhancing its role as a robust profiling tool. ExplaineR empowers users to generate comprehensive reports on machine learning outcomes, ensuring consistent and thorough documentation of model performance and interpretations.

Availability and implementation: ExplaineR 1.0.0 is available on GitHub (https://persimune.github.io/explainer/) and CRAN (https://cran.r-project.org/web/packages/explainer/index.html).

ExplaineR: 用于解释机器学习模型的 R 软件包。
摘要:SHapley Additive exPlanations(SHAP)是一种广泛使用的模型解释方法。然而,由于缺乏专用软件工具,它的全部潜力往往仍未得到开发。为此,本文介绍了一个基于聚类功能的 R 软件包 ExplaineR,以方便解释二元分类和回归模型的 SHAP 分析。此外,它还在可视化方面提供了用户互动元素,用于评估模型性能、公平性分析、决策曲线分析和各种 SHAP 图。它有助于对模型进行深入的预测后分析,使用户能够在 SHAP 图中找出潜在的重要模式,并随后通过 SHAP 聚类追溯到实例。这一功能对于识别临床队列中的患者亚群尤为重要,从而增强了其作为强大的剖析工具的作用。ExplaineR 使用户能够生成有关机器学习结果的综合报告,确保对模型性能和解释进行一致而全面的记录:ExplaineR 1.0.0 可在 GitHub (https://persimune.github.io/explainer/) 和 CRAN (https://cran.r-project.org/web/packages/explainer/index.html) 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信