[A review on electroencephalogram based channel selection].

Q4 Medicine
Xiangzhe Li, Dan Wang, Baiwen Zhang, Chaojie Fan, Jiaming Chen, Meng Xu, Yuanfang Chen
{"title":"[A review on electroencephalogram based channel selection].","authors":"Xiangzhe Li, Dan Wang, Baiwen Zhang, Chaojie Fan, Jiaming Chen, Meng Xu, Yuanfang Chen","doi":"10.7507/1001-5515.202308034","DOIUrl":null,"url":null,"abstract":"<p><p>The electroencephalogram (EEG) signal is the key signal carrier of the brain-computer interface (BCI) system. The EEG data collected by the whole-brain electrode arrangement is conducive to obtaining higher information representation. Personalized electrode layout, while ensuring the accuracy of EEG signal decoding, can also shorten the calibration time of BCI and has become an important research direction. This paper reviews the EEG signal channel selection methods in recent years, conducts a comparative analysis of the combined effects of different channel selection methods and different classification algorithms, obtains the commonly used channel combinations in motor imagery, P300 and other paradigms in BCI, and explains the application scenarios of the channel selection method in different paradigms are discussed, in order to provide stronger support for a more accurate and portable BCI system.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 2","pages":"398-405"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058489/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202308034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

The electroencephalogram (EEG) signal is the key signal carrier of the brain-computer interface (BCI) system. The EEG data collected by the whole-brain electrode arrangement is conducive to obtaining higher information representation. Personalized electrode layout, while ensuring the accuracy of EEG signal decoding, can also shorten the calibration time of BCI and has become an important research direction. This paper reviews the EEG signal channel selection methods in recent years, conducts a comparative analysis of the combined effects of different channel selection methods and different classification algorithms, obtains the commonly used channel combinations in motor imagery, P300 and other paradigms in BCI, and explains the application scenarios of the channel selection method in different paradigms are discussed, in order to provide stronger support for a more accurate and portable BCI system.

[基于脑电图的通道选择综述]。
脑电图(EEG)信号是脑机接口(BCI)系统的关键信号载体。全脑电极布局采集的脑电数据有利于获得更高的信息表征。个性化的电极布置在保证脑电信号解码准确性的同时,还能缩短 BCI 的校准时间,已成为一个重要的研究方向。本文回顾了近年来的脑电信号通道选择方法,对不同通道选择方法和不同分类算法的综合效果进行了对比分析,得出了运动意象、P300等范式在BCI中常用的通道组合,并阐述了通道选择方法在不同范式中的应用场景,以期为更准确、更便携的BCI系统提供更有力的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
生物医学工程学杂志
生物医学工程学杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
4868
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信