Feature Selection for Unsupervised Machine Learning.

Huyunting Huang, Ziyang Tang, Tonglin Zhang, Baijian Yang, Qianqian Song, Jing Su
{"title":"Feature Selection for Unsupervised Machine Learning.","authors":"Huyunting Huang, Ziyang Tang, Tonglin Zhang, Baijian Yang, Qianqian Song, Jing Su","doi":"10.1109/smartcloud58862.2023.00036","DOIUrl":null,"url":null,"abstract":"<p><p>Compared to supervised machine learning (ML), the development of feature selection for unsupervised ML is far behind. To address this issue, the current research proposes a stepwise feature selection approach for clustering methods with a specification to the Gaussian mixture model (GMM) and the <math><mi>k</mi></math>-means. Rather than the existing GMM and <math><mi>k</mi></math>-means which are carried out based on all the features, the proposed method selects a subset of features to implement the two methods, respectively. The research finds that a better result can be obtained if the existing GMM and <math><mi>k</mi></math>-means methods are modified by nice initializations. Experiments based on Monte Carlo simulations show that the proposed method is more computationally efficient and the result is more accurate than the existing GMM and <math><mi>k</mi></math>-means methods based on all the features. The experiment based on a real-world dataset confirms this finding.</p>","PeriodicalId":519898,"journal":{"name":"IEEE International Conference on Smart Cloud","volume":"2023 ","pages":"164-169"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11070246/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Smart Cloud","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/smartcloud58862.2023.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Compared to supervised machine learning (ML), the development of feature selection for unsupervised ML is far behind. To address this issue, the current research proposes a stepwise feature selection approach for clustering methods with a specification to the Gaussian mixture model (GMM) and the k-means. Rather than the existing GMM and k-means which are carried out based on all the features, the proposed method selects a subset of features to implement the two methods, respectively. The research finds that a better result can be obtained if the existing GMM and k-means methods are modified by nice initializations. Experiments based on Monte Carlo simulations show that the proposed method is more computationally efficient and the result is more accurate than the existing GMM and k-means methods based on all the features. The experiment based on a real-world dataset confirms this finding.

无监督机器学习的特征选择
与有监督机器学习(ML)相比,无监督 ML 的特征选择发展远远落后。为解决这一问题,当前的研究提出了一种针对聚类方法的逐步特征选择方法,并对高斯混合模型(GMM)和 k-means 进行了规范。与现有的基于所有特征的 GMM 和 k-means 方法不同,本研究提出的方法选择了一个特征子集来分别实施这两种方法。研究发现,如果对现有的 GMM 和 k-means 方法进行良好的初始化修改,就能获得更好的结果。基于蒙特卡罗模拟的实验表明,与基于所有特征的现有 GMM 和 k-means 方法相比,所提出的方法计算效率更高,结果也更准确。基于真实世界数据集的实验也证实了这一结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信