{"title":"Monte Carlo simulation for photon energy response from the RADOS dosemeter.","authors":"Max da Silva Ferreira","doi":"10.1093/rpd/ncae114","DOIUrl":null,"url":null,"abstract":"<p><p>Ionizing radiation interaction models are commonly included in Monte Carlo codes. However, as there are different models and different output quantities available, it is important to understand the physical phenomena used. So, the aim of this study is to analyze the photon interaction model called Simple Physical Treatment of the Monte Carlo code MCNPX to estimate the energy dependence of photons from the RADOS dosemeter and to validate this calculation method by comparing it with experimental results found in the literature. The energy deposition in the MTS-N detector and the air kerma were obtained accompanied by their uncertainties, which varied between 1.5% and 3.0%. The RADOS dosemeter simulation and the calculation methodology applied in this study have been validated. Therefore, when using the Simple Physical Treatment model, the effective dose can be corrected by a correction factor calculated from the simulated results.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/rpd/ncae114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ionizing radiation interaction models are commonly included in Monte Carlo codes. However, as there are different models and different output quantities available, it is important to understand the physical phenomena used. So, the aim of this study is to analyze the photon interaction model called Simple Physical Treatment of the Monte Carlo code MCNPX to estimate the energy dependence of photons from the RADOS dosemeter and to validate this calculation method by comparing it with experimental results found in the literature. The energy deposition in the MTS-N detector and the air kerma were obtained accompanied by their uncertainties, which varied between 1.5% and 3.0%. The RADOS dosemeter simulation and the calculation methodology applied in this study have been validated. Therefore, when using the Simple Physical Treatment model, the effective dose can be corrected by a correction factor calculated from the simulated results.