Completeness and Geodesic Distance Properties for Fractional Sobolev Metrics on Spaces of Immersed Curves.

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2024-01-01 Epub Date: 2024-05-03 DOI:10.1007/s12220-024-01652-3
Martin Bauer, Patrick Heslin, Cy Maor
{"title":"Completeness and Geodesic Distance Properties for Fractional Sobolev Metrics on Spaces of Immersed Curves.","authors":"Martin Bauer, Patrick Heslin, Cy Maor","doi":"10.1007/s12220-024-01652-3","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the geometry of the space of immersed closed curves equipped with reparametrization-invariant Riemannian metrics; the metrics we consider are Sobolev metrics of possible fractional-order <math><mrow><mi>q</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></math>. We establish the critical Sobolev index on the metric for several key geometric properties. Our first main result shows that the Riemannian metric induces a metric space structure if and only if <math><mrow><mi>q</mi><mo>></mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math>. Our second main result shows that the metric is geodesically complete (i.e., the geodesic equation is globally well posed) if <math><mrow><mi>q</mi><mo>></mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></math>, whereas if <math><mrow><mi>q</mi><mo><</mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></math> then finite-time blowup may occur. The geodesic completeness for <math><mrow><mi>q</mi><mo>></mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></math> is obtained by proving metric completeness of the space of <math><msup><mi>H</mi><mi>q</mi></msup></math>-immersed curves with the distance induced by the Riemannian metric.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"34 7","pages":"214"},"PeriodicalIF":1.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11068588/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-024-01652-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the geometry of the space of immersed closed curves equipped with reparametrization-invariant Riemannian metrics; the metrics we consider are Sobolev metrics of possible fractional-order q[0,). We establish the critical Sobolev index on the metric for several key geometric properties. Our first main result shows that the Riemannian metric induces a metric space structure if and only if q>1/2. Our second main result shows that the metric is geodesically complete (i.e., the geodesic equation is globally well posed) if q>3/2, whereas if q<3/2 then finite-time blowup may occur. The geodesic completeness for q>3/2 is obtained by proving metric completeness of the space of Hq-immersed curves with the distance induced by the Riemannian metric.

沉浸曲线空间上分数 Sobolev 度量的完备性和大地距离特性
我们研究了配有重参数化不变黎曼度量的沉浸封闭曲线空间的几何;我们考虑的度量是可能分数阶 q∈[0,∞) 的 Sobolev 度量。我们为度量的几个关键几何性质建立了临界索波列夫指数。我们的第一个主要结果表明,当且仅当 q>1/2 时,黎曼度量引出一个度量空间结构。我们的第二个主要结果表明,如果 q>3/2,则公度量是测地完全的(即测地方程是全局良好拟合的),而如果 q3/2,则可能出现有限时间膨胀。q>3/2 的大地完备性是通过证明具有黎曼度量所诱导距离的 Hq-immersed 曲线空间的度量完备性得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信