[Digital precision medicine in rhythmology : Risk prediction of recurrences, sudden cardiac death, and outcome].

Q4 Medicine
Ann-Kathrin Rahm, Patrick Lugenbiel
{"title":"[Digital precision medicine in rhythmology : Risk prediction of recurrences, sudden cardiac death, and outcome].","authors":"Ann-Kathrin Rahm, Patrick Lugenbiel","doi":"10.1007/s00399-024-01015-z","DOIUrl":null,"url":null,"abstract":"<p><p>Digital precision medicine is gaining increasing importance in rhythmology, especially in the treatment of cardiac arrhythmias. This trend is driven by the advancing digitization in healthcare and the availability of large amounts of data from various sources such as electrocardiograms (ECGs), implants like pacemakers and implantable cardioverter-defibrillators (ICDs), as well as wearables like smartwatches and fitness trackers. Through the analysis of this data, physicians can develop more precise and individualized diagnoses and treatment strategies for patients with cardiac arrhythmias. For example, subtle changes in ECGs can be identified, indicating potentially dangerous arrhythmias. Genetic analyses and resulting large datasets also play an increasingly significant role, especially in hereditary ion channel disorders such as long QT syndrome (LQTS) and Brugada syndrome (BrS), as well as in lone atrial fibrillation (AF). Precision medicine enables the development of individualized treatment approaches tailored to the specific needs and risk factors of each patient. This can help improve screening strategies, reduce adverse events, and ultimately enhance the quality of life for patients. Technological advancements such as big data, artificial intelligence, machine learning, and predictive analytics play a crucial role in predicting the risk of arrhythmias and sudden cardiac death. These concepts enable more precise and personalized predictions and support physicians in the treatment and monitoring of their patients.</p>","PeriodicalId":52403,"journal":{"name":"Herzschrittmachertherapie und Elektrophysiologie","volume":" ","pages":"97-103"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Herzschrittmachertherapie und Elektrophysiologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00399-024-01015-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Digital precision medicine is gaining increasing importance in rhythmology, especially in the treatment of cardiac arrhythmias. This trend is driven by the advancing digitization in healthcare and the availability of large amounts of data from various sources such as electrocardiograms (ECGs), implants like pacemakers and implantable cardioverter-defibrillators (ICDs), as well as wearables like smartwatches and fitness trackers. Through the analysis of this data, physicians can develop more precise and individualized diagnoses and treatment strategies for patients with cardiac arrhythmias. For example, subtle changes in ECGs can be identified, indicating potentially dangerous arrhythmias. Genetic analyses and resulting large datasets also play an increasingly significant role, especially in hereditary ion channel disorders such as long QT syndrome (LQTS) and Brugada syndrome (BrS), as well as in lone atrial fibrillation (AF). Precision medicine enables the development of individualized treatment approaches tailored to the specific needs and risk factors of each patient. This can help improve screening strategies, reduce adverse events, and ultimately enhance the quality of life for patients. Technological advancements such as big data, artificial intelligence, machine learning, and predictive analytics play a crucial role in predicting the risk of arrhythmias and sudden cardiac death. These concepts enable more precise and personalized predictions and support physicians in the treatment and monitoring of their patients.

[心律学中的数字精准医学:复发、心脏性猝死和预后的风险预测]。
数字精准医疗在心律学领域的重要性与日俱增,尤其是在心律失常的治疗方面。推动这一趋势的是医疗数字化的不断发展,以及来自心电图(ECG)、起搏器和植入式心律转复除颤器(ICD)等植入物以及智能手表和健身追踪器等可穿戴设备等各种来源的大量数据。通过分析这些数据,医生可以为心律失常患者制定更精确、更个性化的诊断和治疗策略。例如,可以识别心电图中的细微变化,提示潜在的危险性心律失常。基因分析和由此产生的大型数据集也发挥着越来越重要的作用,尤其是在长 QT 综合征 (LQTS) 和布鲁加达综合征 (BrS) 等遗传性离子通道疾病以及孤独性心房颤动 (AF) 方面。精准医学能够根据每位患者的具体需求和风险因素制定个性化治疗方法。这有助于改进筛查策略,减少不良事件,并最终提高患者的生活质量。大数据、人工智能、机器学习和预测分析等技术进步在预测心律失常和心脏性猝死风险方面发挥着至关重要的作用。这些概念可实现更精确和个性化的预测,为医生治疗和监测患者提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Herzschrittmachertherapie und Elektrophysiologie
Herzschrittmachertherapie und Elektrophysiologie Medicine-Cardiology and Cardiovascular Medicine
CiteScore
1.10
自引率
0.00%
发文量
76
期刊介绍: Mit wissenschaftlichen Original- und Übersichtsarbeiten, Berichten über moderne Operationstechniken und experimentelle Methoden ist die Zeitschrift Herzschrittmachertherapie + Elektrophysiologie ein Diskussionsforum für Themen wie: - Zelluläre Elektrophysiologie - Theoretische Elektrophysiologie - Klinische Elektrophysiologie - Angewandte Herzschrittmachertherapie - Bradykarde und tachykarde Herzrhythmusstörungen - Plötzlicher Herztod und Risikostratifikation - Elektrokardiographie - Elektromedizinische Technologie - Experimentelle und klinische Pharmakologie - Herzchirurgie bei Herzrhythmusstörungen Mitteilungen der Arbeitsgruppen Herzschrittmacher und Arrhythmie der Deutschen Gesellschaft für Kardiologie - Herz und Kreislaufforschung e.V. (DGK) sowie Stellungnahmen und praktische Hinweise runden das breite Spektrum dieser Zeitschrift ab. Interessensgebiete: Kardiologie, Herzschrittmachertherapie, Herzschrittmachertechnologie, klinische Elektrophysiologie
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信