Luan Dias Lima, Kamylla Balbuena Michelutti, Claudia Andrea Lima Cardoso, Sidnei Eduardo Lima-Junior, Gustavo Graciolli, William Fernando Antonialli-Junior
{"title":"Low Intraspecific Aggression Level, Cuticular Hydrocarbons, and Polydomy in the Bullet Ant.","authors":"Luan Dias Lima, Kamylla Balbuena Michelutti, Claudia Andrea Lima Cardoso, Sidnei Eduardo Lima-Junior, Gustavo Graciolli, William Fernando Antonialli-Junior","doi":"10.1007/s10886-024-01497-8","DOIUrl":null,"url":null,"abstract":"<p><p>Ants use chemical cues known as cuticular hydrocarbons (CHCs) for both intraspecific and interspecific recognition. These compounds serve ants in distinguishing between nestmates and non-nestmates, enabling them to coexist in polydomous colonies characterized by socially connected yet spatially separated nests. Hence, the aim of this study was to investigate the intraspecific aggression level between nestmates and non-nestmates of the bullet ant Paraponera clavata (Fabricius, 1775), analyze and compare their CHCs, and evaluate the occurrence of polydomy in this species. We conducted aggression tests between foragers, both in laboratory and field settings. To identify the chemical profiles, we utilized gas chromatography coupled with mass spectrometry (GC-MS). We marked the foragers found at nest entrances and subsequently recaptured these marked ants to validate workers exchange among nests. Across all nests, a low intraspecific aggression level was observed within the same area. However, a significant difference in aggression correlated to distance between nests. Analysis of the cuticular chemical profile of P. clavata unveiled colony-specific CHCs, both qualitatively and quantitatively. Notably, we observed instances of ants from certain nests entering or exiting different nests. This behavior, in conjunction with the observed low intraspecific aggression despite differences in CHCs suggests polydomy for this species. Polydomy can offer several benefits, including risk spreading, efficient exploitation of resources, potential for colony size increasing and reduced costs associated with foraging and competition.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":" ","pages":"351-363"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10886-024-01497-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ants use chemical cues known as cuticular hydrocarbons (CHCs) for both intraspecific and interspecific recognition. These compounds serve ants in distinguishing between nestmates and non-nestmates, enabling them to coexist in polydomous colonies characterized by socially connected yet spatially separated nests. Hence, the aim of this study was to investigate the intraspecific aggression level between nestmates and non-nestmates of the bullet ant Paraponera clavata (Fabricius, 1775), analyze and compare their CHCs, and evaluate the occurrence of polydomy in this species. We conducted aggression tests between foragers, both in laboratory and field settings. To identify the chemical profiles, we utilized gas chromatography coupled with mass spectrometry (GC-MS). We marked the foragers found at nest entrances and subsequently recaptured these marked ants to validate workers exchange among nests. Across all nests, a low intraspecific aggression level was observed within the same area. However, a significant difference in aggression correlated to distance between nests. Analysis of the cuticular chemical profile of P. clavata unveiled colony-specific CHCs, both qualitatively and quantitatively. Notably, we observed instances of ants from certain nests entering or exiting different nests. This behavior, in conjunction with the observed low intraspecific aggression despite differences in CHCs suggests polydomy for this species. Polydomy can offer several benefits, including risk spreading, efficient exploitation of resources, potential for colony size increasing and reduced costs associated with foraging and competition.
期刊介绍:
Journal of Chemical Ecology is devoted to promoting an ecological understanding of the origin, function, and significance of natural chemicals that mediate interactions within and between organisms. Such relationships, often adaptively important, comprise the oldest of communication systems in terrestrial and aquatic environments. With recent advances in methodology for elucidating structures of the chemical compounds involved, a strong interdisciplinary association has developed between chemists and biologists which should accelerate understanding of these interactions in nature.
Scientific contributions, including review articles, are welcome from either members or nonmembers of the International Society of Chemical Ecology. Manuscripts must be in English and may include original research in biological and/or chemical aspects of chemical ecology. They may include substantive observations of interactions in nature, the elucidation of the chemical compounds involved, the mechanisms of their production and reception, and the translation of such basic information into survey and control protocols. Sufficient biological and chemical detail should be given to substantiate conclusions and to permit results to be evaluated and reproduced.