Identifying Shared Neuroanatomic Architecture between Cognitive Traits through Multiscale Morphometric Correlation Analysis.

Zixuan Wen, Jingxuan Bao, Shu Yang, Shannon L Risacher, Andrew J Saykin, Paul M Thompson, Christos Davatzikos, Heng Huang, Yize Zhao, Li Shen
{"title":"Identifying Shared Neuroanatomic Architecture between Cognitive Traits through Multiscale Morphometric Correlation Analysis.","authors":"Zixuan Wen, Jingxuan Bao, Shu Yang, Shannon L Risacher, Andrew J Saykin, Paul M Thompson, Christos Davatzikos, Heng Huang, Yize Zhao, Li Shen","doi":"10.1007/978-3-031-47425-5_21","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce an informative metric, called morphometric correlation, as a measure of shared neuroanatomic similarity between two cognitive traits. Traditional estimates of trait correlations can be confounded by factors beyond brain morphology. To exclude these confounding factors, we adopt a Gaussian kernel to measure the morphological similarity between individuals and compare pure neuroanatomic correlations among cognitive traits. In our empirical study, we employ a multiscale strategy. Given a set of cognitive traits, we first perform morphometric correlation analysis for each pair of traits to reveal their shared neuroanatomic correlation at the whole brain (or global) level. After that, we extend our whole brain concept to regional morphometric correlation and estimate shared neuroanatomic similarity between two cognitive traits at the regional (or local) level. Our results demonstrate that morphometric correlation can provide insights into shared neuroanatomic architecture between cognitive traits. Furthermore, we also estimate the morphometricity of each cognitive trait at both global and local levels, which can be used to better understand how neuroanatomic changes influence individuals' cognitive status.</p>","PeriodicalId":517997,"journal":{"name":"Medical image computing and computer assisted intervention - MICCAI 2023 workshops : ISIC 2023, Care-AI 2023, MedAGI 2023, DeCaF 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8-12, 2023, proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10993314/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer assisted intervention - MICCAI 2023 workshops : ISIC 2023, Care-AI 2023, MedAGI 2023, DeCaF 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8-12, 2023, proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-47425-5_21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce an informative metric, called morphometric correlation, as a measure of shared neuroanatomic similarity between two cognitive traits. Traditional estimates of trait correlations can be confounded by factors beyond brain morphology. To exclude these confounding factors, we adopt a Gaussian kernel to measure the morphological similarity between individuals and compare pure neuroanatomic correlations among cognitive traits. In our empirical study, we employ a multiscale strategy. Given a set of cognitive traits, we first perform morphometric correlation analysis for each pair of traits to reveal their shared neuroanatomic correlation at the whole brain (or global) level. After that, we extend our whole brain concept to regional morphometric correlation and estimate shared neuroanatomic similarity between two cognitive traits at the regional (or local) level. Our results demonstrate that morphometric correlation can provide insights into shared neuroanatomic architecture between cognitive traits. Furthermore, we also estimate the morphometricity of each cognitive trait at both global and local levels, which can be used to better understand how neuroanatomic changes influence individuals' cognitive status.

通过多尺度形态计量相关性分析确定认知特征之间共享的神经解剖结构
我们引入了一种信息量丰富的度量方法,称为形态计量相关性(morphometric correlation),作为两个认知特征之间共享神经解剖相似性的度量方法。传统的特质相关性估计可能会受到大脑形态学以外因素的干扰。为了排除这些干扰因素,我们采用高斯核来测量个体之间的形态相似性,并比较认知特质之间的纯神经解剖相关性。在实证研究中,我们采用了多尺度策略。给定一组认知特质后,我们首先对每对特质进行形态计量相关性分析,以揭示它们在全脑(或全局)水平上的共同神经解剖相关性。然后,我们将全脑概念扩展到区域形态计量相关性,并在区域(或局部)水平上估计两个认知特征之间共享的神经解剖相似性。我们的研究结果表明,形态计量学相关性可以为认知特征之间共享的神经解剖结构提供洞察力。此外,我们还估算了每种认知特质在整体和局部水平上的形态计量性,这可用于更好地理解神经解剖变化如何影响个体的认知状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信