Danishuddin, M Z Malik, M Kashif, S Haque, J J Kim
{"title":"Exploring chemical space, scaffold diversity, and activity landscape of spleen tyrosine kinase active inhibitors.","authors":"Danishuddin, M Z Malik, M Kashif, S Haque, J J Kim","doi":"10.1080/1062936X.2024.2345618","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to comprehensively characterize 576 inhibitors targeting Spleen Tyrosine Kinase (SYK), a non-receptor tyrosine kinase primarily found in haematopoietic cells, with significant relevance to B-cell receptor function. The objective is to gain insights into the structural requirements essential for potent activity, with implications for various therapeutic applications. Through chemoinformatic analyses, we focus on exploring the chemical space, scaffold diversity, and structure-activity relationships (SAR). By leveraging ECFP4 and MACCS fingerprints, we elucidate the relationship between chemical compounds and visualize the network using RDKit and NetworkX platforms. Additionally, compound clustering and visualization of the associated chemical space aid in understanding overall diversity. The outcomes include identifying consensus diversity patterns to assess global chemical space diversity. Furthermore, incorporating pairwise activity differences enhances the activity landscape visualization, revealing heterogeneous SAR patterns. The dataset analysed in this work has three activity cliff generators, CHEMBL3415598, CHEMBL4780257, and CHEMBL3265037, compounds with high affinity to SYK are very similar to compounds analogues with reasonable potency differences. Overall, this study provides a critical analysis of SYK inhibitors, uncovering potential scaffolds and chemical moieties crucial for their activity, thereby advancing the understanding of their therapeutic potential.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":"35 4","pages":"325-342"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2024.2345618","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to comprehensively characterize 576 inhibitors targeting Spleen Tyrosine Kinase (SYK), a non-receptor tyrosine kinase primarily found in haematopoietic cells, with significant relevance to B-cell receptor function. The objective is to gain insights into the structural requirements essential for potent activity, with implications for various therapeutic applications. Through chemoinformatic analyses, we focus on exploring the chemical space, scaffold diversity, and structure-activity relationships (SAR). By leveraging ECFP4 and MACCS fingerprints, we elucidate the relationship between chemical compounds and visualize the network using RDKit and NetworkX platforms. Additionally, compound clustering and visualization of the associated chemical space aid in understanding overall diversity. The outcomes include identifying consensus diversity patterns to assess global chemical space diversity. Furthermore, incorporating pairwise activity differences enhances the activity landscape visualization, revealing heterogeneous SAR patterns. The dataset analysed in this work has three activity cliff generators, CHEMBL3415598, CHEMBL4780257, and CHEMBL3265037, compounds with high affinity to SYK are very similar to compounds analogues with reasonable potency differences. Overall, this study provides a critical analysis of SYK inhibitors, uncovering potential scaffolds and chemical moieties crucial for their activity, thereby advancing the understanding of their therapeutic potential.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.