{"title":"DNASCANNER v2: A Web-Based Tool to Analyze the Characteristic Properties of Nucleotide Sequences.","authors":"Preeti P, Azeen Riyaz, Alakto Choudhury, Priyanka Ray Choudhury, Nischal Pradhan, Abhishek Singh, Mihir Nakul, Chhavi Dudeja, Abhijeet Yadav, Swarsat Kaushik Nath, Vrinda Khanna, Trapti Sharma, Gayatri Pradhan, Simran Takkar, Kamal Rawal","doi":"10.1089/cmb.2023.0227","DOIUrl":null,"url":null,"abstract":"<p><p>\n <b>Throughout the process of evolution, DNA undergoes the accumulation of distinct mutations, which can often result in highly organized patterns that serve various essential biological functions. These patterns encompass various genomic elements and provide valuable insights into the regulatory and functional aspects of DNA. The physicochemical, mechanical, thermodynamic, and structural properties of DNA sequences play a crucial role in the formation of specific patterns. These properties contribute to the three-dimensional structure of DNA and influence their interactions with proteins, regulatory elements, and other molecules. In this study, we introduce DNASCANNER v2, an advanced version of our previously published algorithm DNASCANNER for analyzing DNA properties. The current tool is built using the FLASK framework in Python language. Featuring a user-friendly interface tailored for nonspecialized researchers, it offers an extensive analysis of 158 DNA properties, including mono/di/trinucleotide frequencies, structural, physicochemical, thermodynamics, and mechanical properties of DNA sequences. The tool provides downloadable results and offers interactive plots for easy interpretation and comparison between different features. We also demonstrate the utility of DNASCANNER v2 in analyzing splice-site junctions, casposon insertion sequences, and transposon insertion sites (TIS) within the bacterial and human genomes, respectively. We also developed a deep learning module for the prediction of potential TIS in a given nucleotide sequence. In the future, we aim to optimize the performance of this prediction model through extensive training on larger data sets.</b>\n </p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"651-669"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0227","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/25 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Throughout the process of evolution, DNA undergoes the accumulation of distinct mutations, which can often result in highly organized patterns that serve various essential biological functions. These patterns encompass various genomic elements and provide valuable insights into the regulatory and functional aspects of DNA. The physicochemical, mechanical, thermodynamic, and structural properties of DNA sequences play a crucial role in the formation of specific patterns. These properties contribute to the three-dimensional structure of DNA and influence their interactions with proteins, regulatory elements, and other molecules. In this study, we introduce DNASCANNER v2, an advanced version of our previously published algorithm DNASCANNER for analyzing DNA properties. The current tool is built using the FLASK framework in Python language. Featuring a user-friendly interface tailored for nonspecialized researchers, it offers an extensive analysis of 158 DNA properties, including mono/di/trinucleotide frequencies, structural, physicochemical, thermodynamics, and mechanical properties of DNA sequences. The tool provides downloadable results and offers interactive plots for easy interpretation and comparison between different features. We also demonstrate the utility of DNASCANNER v2 in analyzing splice-site junctions, casposon insertion sequences, and transposon insertion sites (TIS) within the bacterial and human genomes, respectively. We also developed a deep learning module for the prediction of potential TIS in a given nucleotide sequence. In the future, we aim to optimize the performance of this prediction model through extensive training on larger data sets.
期刊介绍:
Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics.
Journal of Computational Biology coverage includes:
-Genomics
-Mathematical modeling and simulation
-Distributed and parallel biological computing
-Designing biological databases
-Pattern matching and pattern detection
-Linking disparate databases and data
-New tools for computational biology
-Relational and object-oriented database technology for bioinformatics
-Biological expert system design and use
-Reasoning by analogy, hypothesis formation, and testing by machine
-Management of biological databases