{"title":"Anti-osteoporosis activity of casticin in ovariectomized rats.","authors":"Dong Zhang, Jianmin Li, Xuejia Li, Wanxin Liu, Ying Yu, Hao Sun, Jiajun Wu, Zhichao Ge, Kai Lv, Yanting Shao, Shuqiang Wang, Xiaojian Ye","doi":"10.1093/toxres/tfae064","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Postmenopausal osteoporosis (PMPO) is the most familiar type of osteoporosis, a silent bone disease. Casticin, a natural flavonoid constituent, improves osteoporosis in animal model. Nevertheless, the potential mechanism remains to be further explored.</p><p><strong>Methods: </strong>A model of PMPO was established in rats treated with ovariectomy (OVX) and RAW 264.7 cells induced with receptor activator of nuclear factor kappa-B ligand (RANKL). The effect and potential mechanism of casticin on PMPO were addressed by pathological staining, measurement of bone mineral density (BMD), three-point bending test, serum biochemical detection, filamentous-actin (F-actin) ring staining, TRAcP staining, reverse transcription quantitative polymerase chain reaction, western blot and examination of oxidative stress indicators.</p><p><strong>Results: </strong>The casticin treatment increased the femoral trabecular area, bone maturity, BMD, elastic modulus, maximum load, the level of calcium and estrogen with the reduced concentrations of alkaline phosphatase (ALP) and tumor necrosis factor (TNF)-α in OVX rats. An enhancement in the F-actin ring formation, TRAcP staining and the relative mRNA expression of NFATc1 and TRAP was observed in RANKL-induced RAW 264.7 cells, which was declined by the treatment of casticin. Moreover, the casticin treatment reversed the reduced the relative protein expression of Nrf2 and HO-1 and the concentrations of superoxide dismutase and glutathione peroxidase, and the increased content of malondialdehyde both in vivo and in vitro.</p><p><strong>Conclusion: </strong>Casticin improved bone density, bone biomechanics, the level of calcium and estrogen, the release of pro-inflammatory factor and oxidative stress to alleviate osteoporosis, which was associated with the upregulation of Nrf2/HO-1 pathway.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 2","pages":"tfae064"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11052697/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxres/tfae064","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Postmenopausal osteoporosis (PMPO) is the most familiar type of osteoporosis, a silent bone disease. Casticin, a natural flavonoid constituent, improves osteoporosis in animal model. Nevertheless, the potential mechanism remains to be further explored.
Methods: A model of PMPO was established in rats treated with ovariectomy (OVX) and RAW 264.7 cells induced with receptor activator of nuclear factor kappa-B ligand (RANKL). The effect and potential mechanism of casticin on PMPO were addressed by pathological staining, measurement of bone mineral density (BMD), three-point bending test, serum biochemical detection, filamentous-actin (F-actin) ring staining, TRAcP staining, reverse transcription quantitative polymerase chain reaction, western blot and examination of oxidative stress indicators.
Results: The casticin treatment increased the femoral trabecular area, bone maturity, BMD, elastic modulus, maximum load, the level of calcium and estrogen with the reduced concentrations of alkaline phosphatase (ALP) and tumor necrosis factor (TNF)-α in OVX rats. An enhancement in the F-actin ring formation, TRAcP staining and the relative mRNA expression of NFATc1 and TRAP was observed in RANKL-induced RAW 264.7 cells, which was declined by the treatment of casticin. Moreover, the casticin treatment reversed the reduced the relative protein expression of Nrf2 and HO-1 and the concentrations of superoxide dismutase and glutathione peroxidase, and the increased content of malondialdehyde both in vivo and in vitro.
Conclusion: Casticin improved bone density, bone biomechanics, the level of calcium and estrogen, the release of pro-inflammatory factor and oxidative stress to alleviate osteoporosis, which was associated with the upregulation of Nrf2/HO-1 pathway.