Characterizing Liquid Water in Deep Martian Aquifers: A Seismo-Electric Approach

IF 3.9 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
N. Roth, T. Zhu, Y. Gao
{"title":"Characterizing Liquid Water in Deep Martian Aquifers: A Seismo-Electric Approach","authors":"N. Roth,&nbsp;T. Zhu,&nbsp;Y. Gao","doi":"10.1029/2024JE008292","DOIUrl":null,"url":null,"abstract":"<p>Deep Martian aquifers harboring liquid water could hold vital insights for current and past habitability. We show that with seismo-electric interface responses (IRs) we can quantitatively characterize subsurface water on Mars. Full-waveform simulations and sensitivity analyses across diverse Martian aquifer scenarios demonstrate the technique's effectiveness. In contrast to how seismo-electric signals often appear on Earth, Mars' desiccated surface naturally removes co-seismic fields and exposes useful IRs that allow us to characterize several aquifer properties. Changing the aquifer depth, thickness, or quantity changes the IR arrival times or shape: aquifer depth is a strong control on evanescent IRs, thickness affects the relative timing of IRs, and increasing the number of aquifers introduces more dipole sources to the waveform. Other factors, such as aquifer saturation, chemistry, and salinity, strongly affect IR amplitude but have minimal or no effect on waveform shape. Notably, for a deep low-porosity aquifer, the salinity and brine chemistry (perchlorate vs. chloride) are the strongest controls on signal amplitude. Analyzing the effects of epicentral distance shows that radiating and evanescent IRs separate at large source-receiver offset, allowing analyses of both signals and accurate event distance derivation. From this numerical investigation of the sensitivity of IRs to deep Martian aquifers, we anticipate future analyses of electromagnetic data from the InSight lander or future missions to Mars and other planets.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008292","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008292","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep Martian aquifers harboring liquid water could hold vital insights for current and past habitability. We show that with seismo-electric interface responses (IRs) we can quantitatively characterize subsurface water on Mars. Full-waveform simulations and sensitivity analyses across diverse Martian aquifer scenarios demonstrate the technique's effectiveness. In contrast to how seismo-electric signals often appear on Earth, Mars' desiccated surface naturally removes co-seismic fields and exposes useful IRs that allow us to characterize several aquifer properties. Changing the aquifer depth, thickness, or quantity changes the IR arrival times or shape: aquifer depth is a strong control on evanescent IRs, thickness affects the relative timing of IRs, and increasing the number of aquifers introduces more dipole sources to the waveform. Other factors, such as aquifer saturation, chemistry, and salinity, strongly affect IR amplitude but have minimal or no effect on waveform shape. Notably, for a deep low-porosity aquifer, the salinity and brine chemistry (perchlorate vs. chloride) are the strongest controls on signal amplitude. Analyzing the effects of epicentral distance shows that radiating and evanescent IRs separate at large source-receiver offset, allowing analyses of both signals and accurate event distance derivation. From this numerical investigation of the sensitivity of IRs to deep Martian aquifers, we anticipate future analyses of electromagnetic data from the InSight lander or future missions to Mars and other planets.

Abstract Image

火星深层含水层中液态水的特征:地震电法
深层火星含水层中蕴藏着液态水,可以为当前和过去的宜居性提供重要信息。我们的研究表明,利用地震电界面响应(IRs),我们可以定量描述火星地下水的特征。全波形模拟和各种火星含水层情况下的敏感性分析证明了该技术的有效性。与地球上经常出现的地震电波信号不同,火星干燥的表面会自然消除共震场,并暴露出有用的红外信号,使我们能够确定含水层的若干特性。改变含水层的深度、厚度或数量会改变红外信号的到达时间或形状:含水层深度对蒸发红外信号有很强的控制作用,厚度会影响红外信号的相对时间,含水层数量的增加会给波形带来更多偶极源。其他因素,如含水层的饱和度、化学性质和盐度,对红外波幅的影响很大,但对波形的影响很小,甚至没有影响。值得注意的是,对于深层低孔隙率含水层来说,盐度和盐水化学成分(高氯酸盐与氯化物)对信号振幅的影响最大。分析震中距的影响表明,辐射红外和蒸发红外在源-接收器偏移较大时会分离,从而可以对两种信号进行分析,并得出准确的事件距离。通过对红外信号对火星深层含水层敏感性的数值研究,我们预计未来将对来自InSight着陆器或未来火星和其他行星任务的电磁数据进行分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Planets
Journal of Geophysical Research: Planets Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
8.00
自引率
27.10%
发文量
254
期刊介绍: The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信