Estimating emission flux of H2S from fumarolic fields using vertical sensor array system

IF 2.4 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Yutaka Miyagi , Urumu Tsunogai , Kohei Watanabe , Masanori Ito , Fumiko Nakagawa , Ryunosuke Kazahaya
{"title":"Estimating emission flux of H2S from fumarolic fields using vertical sensor array system","authors":"Yutaka Miyagi ,&nbsp;Urumu Tsunogai ,&nbsp;Kohei Watanabe ,&nbsp;Masanori Ito ,&nbsp;Fumiko Nakagawa ,&nbsp;Ryunosuke Kazahaya","doi":"10.1016/j.jvolgeores.2024.108090","DOIUrl":null,"url":null,"abstract":"<div><p>The emission flux of volatiles from each fumarolic field in volcanic and geothermal areas can be used to evaluate the current state of magmatic activity and predict its future trends. The emission flux of <span><math><mi>S</mi><msub><mi>O</mi><mn>2</mn></msub></math></span> has been quantified in many fumarolic fields using remote sensing techniques, such as differential optical absorption spectroscopy (DOAS). However, most of these remote sensing techniques are inapplicable to fumarolic fields emitting volatiles depleted in <span><math><mi>S</mi><msub><mi>O</mi><mn>2</mn></msub></math></span> to which most of the geothermal fields are classified. In this study, we developed a vertical sensor array system to quantify the emission flux of <span><math><msub><mi>H</mi><mn>2</mn></msub><mi>S</mi></math></span> from each fumarolic field by integrating the cross-sectional distributions of <span><math><msub><mi>H</mi><mn>2</mn></msub><mi>S</mi></math></span> concentrations in the volcanic plume using the vertical sensor array system. In Iwo-yama of the Kirishima volcanic complex, the cross-sectional distribution of <span><math><msub><mi>H</mi><mn>2</mn></msub><mi>S</mi></math></span> concentrations was determined using the walking traverse method by moving the vertical sensor array system in the plume perpendicular to the direction of plume transport. The emission flux of <span><math><mi>S</mi><msub><mi>O</mi><mn>2</mn></msub></math></span> (2.2 ± 0.4 ton <span><math><mi>S</mi><msub><mi>O</mi><mn>2</mn></msub></math></span>/day) was estimated from that of <span><math><msub><mi>H</mi><mn>2</mn></msub><mi>S</mi></math></span> using the walking traverse method (2.6 ± 0.5 ton <span><math><msub><mi>H</mi><mn>2</mn></msub><mi>S</mi></math></span>/day) and the molar ratio of the plume (<span><math><mi>S</mi><msub><mi>O</mi><mn>2</mn></msub></math></span>/<span><math><msub><mi>H</mi><mn>2</mn></msub><mi>S</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>45</mn></math></span>) corresponds well with that estimated optically by JMA. We concluded that the emission flux quantified using the vertical sensor array system was reliable. In the Oyunuma pond in the Kuttara volcano, the emission flux of <span><math><msub><mi>H</mi><mn>2</mn></msub><mi>S</mi></math></span> was quantified as 2.0 ton <span><math><msub><mi>H</mi><mn>2</mn></msub><mi>S</mi></math></span>/day through the fixed point method, wherein the vertical sensor array system was fixed in one point, whereas the cross sectional distribution of <span><math><msub><mi>H</mi><mn>2</mn></msub><mi>S</mi></math></span> in the plume was estimated using the natural variation in wind direction. The topography is often irregular and wind direction is variable in most fumarolic fields; thus, in general, the fixed point method should be more suitable to determine the emission flux of <span><math><msub><mi>H</mi><mn>2</mn></msub><mi>S</mi></math></span> from fumarolic fields, wherein <span><math><msub><mi>H</mi><mn>2</mn></msub><mi>S</mi></math></span> occupies a major portion of the total sulfur emission.</p></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"450 ","pages":"Article 108090"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0377027324000829/pdfft?md5=912fda4ba00404380669d349488a7cd2&pid=1-s2.0-S0377027324000829-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Volcanology and Geothermal Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377027324000829","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The emission flux of volatiles from each fumarolic field in volcanic and geothermal areas can be used to evaluate the current state of magmatic activity and predict its future trends. The emission flux of SO2 has been quantified in many fumarolic fields using remote sensing techniques, such as differential optical absorption spectroscopy (DOAS). However, most of these remote sensing techniques are inapplicable to fumarolic fields emitting volatiles depleted in SO2 to which most of the geothermal fields are classified. In this study, we developed a vertical sensor array system to quantify the emission flux of H2S from each fumarolic field by integrating the cross-sectional distributions of H2S concentrations in the volcanic plume using the vertical sensor array system. In Iwo-yama of the Kirishima volcanic complex, the cross-sectional distribution of H2S concentrations was determined using the walking traverse method by moving the vertical sensor array system in the plume perpendicular to the direction of plume transport. The emission flux of SO2 (2.2 ± 0.4 ton SO2/day) was estimated from that of H2S using the walking traverse method (2.6 ± 0.5 ton H2S/day) and the molar ratio of the plume (SO2/H2S=0.45) corresponds well with that estimated optically by JMA. We concluded that the emission flux quantified using the vertical sensor array system was reliable. In the Oyunuma pond in the Kuttara volcano, the emission flux of H2S was quantified as 2.0 ton H2S/day through the fixed point method, wherein the vertical sensor array system was fixed in one point, whereas the cross sectional distribution of H2S in the plume was estimated using the natural variation in wind direction. The topography is often irregular and wind direction is variable in most fumarolic fields; thus, in general, the fixed point method should be more suitable to determine the emission flux of H2S from fumarolic fields, wherein H2S occupies a major portion of the total sulfur emission.

利用垂直传感器阵列系统估算沼气田的 H2S 排放通量
火山区和地热区每个火成岩场的挥发物排放通量可用于评估岩浆活动的现状并预测其未来趋势。目前已利用遥感技术,如差分光学吸收光谱(DOAS),对许多火成岩区的二氧化硫排放通量进行了量化。然而,这些遥感技术大多不适用于排放二氧化硫贫乏挥发物的火成岩场,而大多数地热田都属于此类。在这项研究中,我们开发了一个垂直传感器阵列系统,利用垂直传感器阵列系统对火山羽流中 H2S 浓度的横截面分布进行整合,从而量化每个火成岩场的 H2S 排放通量。在雾岛火山群的硫磺山,使用行走横移法确定了 H2S 浓度的横截面分布,方法是在垂直于羽流传输方向的羽流中移动垂直传感器阵列系统。根据行走横移法估算出的 H2S 排放通量(2.6 ± 0.5 吨 H2S/天)估算出了 SO2 排放通量(2.2 ± 0.4 吨 SO2/天),烟羽的摩尔比(SO2/H2S=0.45)与 JMA 的光学估算值十分吻合。我们的结论是,利用垂直传感器阵列系统量化的排放通量是可靠的。在库塔拉火山的 Oyunuma 池塘,通过定点法,即把垂直传感器阵列系统固定在一个点上,H2S 的排放通量被量化为每天 2.0 吨 H2S,而羽流中 H2S 的横截面分布则是利用风向的自然变化估算的。大多数火成岩区的地形往往不规则,风向也不固定;因此,一般来说,定点法更适合确定火成岩区的 H2S 排放通量,因为 H2S 在硫排放总量中占主要部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
13.80%
发文量
183
审稿时长
19.7 weeks
期刊介绍: An international research journal with focus on volcanic and geothermal processes and their impact on the environment and society. Submission of papers covering the following aspects of volcanology and geothermal research are encouraged: (1) Geological aspects of volcanic systems: volcano stratigraphy, structure and tectonic influence; eruptive history; evolution of volcanic landforms; eruption style and progress; dispersal patterns of lava and ash; analysis of real-time eruption observations. (2) Geochemical and petrological aspects of volcanic rocks: magma genesis and evolution; crystallization; volatile compositions, solubility, and degassing; volcanic petrography and textural analysis. (3) Hydrology, geochemistry and measurement of volcanic and hydrothermal fluids: volcanic gas emissions; fumaroles and springs; crater lakes; hydrothermal mineralization. (4) Geophysical aspects of volcanic systems: physical properties of volcanic rocks and magmas; heat flow studies; volcano seismology, geodesy and remote sensing. (5) Computational modeling and experimental simulation of magmatic and hydrothermal processes: eruption dynamics; magma transport and storage; plume dynamics and ash dispersal; lava flow dynamics; hydrothermal fluid flow; thermodynamics of aqueous fluids and melts. (6) Volcano hazard and risk research: hazard zonation methodology, development of forecasting tools; assessment techniques for vulnerability and impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信