{"title":"Spatiotemporal dynamics analysis and parameter optimization of a network epidemic-like propagation model based on neural network method","authors":"Shuling Shen , Xinlin Chen , Linhe Zhu","doi":"10.1016/j.jpdc.2024.104906","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a reaction-diffusion model is established to study the dynamic behavior of rumor propagation. Firstly, we consider the existence of the positive equilibrium points. Then, we perform a stability analysis to study the conditions for the occurrence of Turing instability. Secondly, we use multiscale analysis to derive the expression of the amplitude equation. In the process of numerical simulation, the reality is considered. It shows that controlling the spread rate of rumor and the number of new Internet users have a great effect on curbing the spread of online rumor. Furthermore, it is proved that the analysis of amplitude equation plays a decisive role in the formation of Turing patterns. We also discuss the phenomenon of Turing patterns when the network structure changes and verify the rationality of the model by Monte Carlo method. Finally, we consider two methods based on statistical principle and convolutional neural network severally to identify the parameters of the reaction-diffusion system with Turing instability by using stable patterns. The statistical principle-based method offers superior accuracy, whereas the convolutional neural network-based approach significantly reduces recognition time and cuts down time costs.</p></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"191 ","pages":"Article 104906"},"PeriodicalIF":3.4000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731524000704","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a reaction-diffusion model is established to study the dynamic behavior of rumor propagation. Firstly, we consider the existence of the positive equilibrium points. Then, we perform a stability analysis to study the conditions for the occurrence of Turing instability. Secondly, we use multiscale analysis to derive the expression of the amplitude equation. In the process of numerical simulation, the reality is considered. It shows that controlling the spread rate of rumor and the number of new Internet users have a great effect on curbing the spread of online rumor. Furthermore, it is proved that the analysis of amplitude equation plays a decisive role in the formation of Turing patterns. We also discuss the phenomenon of Turing patterns when the network structure changes and verify the rationality of the model by Monte Carlo method. Finally, we consider two methods based on statistical principle and convolutional neural network severally to identify the parameters of the reaction-diffusion system with Turing instability by using stable patterns. The statistical principle-based method offers superior accuracy, whereas the convolutional neural network-based approach significantly reduces recognition time and cuts down time costs.
期刊介绍:
This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing.
The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.