DeepNRMS: Unsupervised deep learning for noise-robust CO2 monitoring in time-lapse seismic images

IF 3 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Geophysics Pub Date : 2024-05-02 DOI:10.1190/geo2023-0608.1
Min Jun Park, Julio Frigerio, Bob Clapp, Biondo Biondi
{"title":"DeepNRMS: Unsupervised deep learning for noise-robust CO2 monitoring in time-lapse seismic images","authors":"Min Jun Park, Julio Frigerio, Bob Clapp, Biondo Biondi","doi":"10.1190/geo2023-0608.1","DOIUrl":null,"url":null,"abstract":"Monitoring stored <span><math display=\"inline\" overflow=\"scroll\"><mrow><msub><mi>CO</mi><mn>2</mn></msub></mrow></math></span> in carbon capture and storage projects is crucial for ensuring safety and effectiveness. We introduce DeepNRMS, a novel noise-robust method that effectively handles time-lapse noise in seismic images. The DeepNRMS leverages unsupervised deep learning to acquire knowledge of time-lapse noise characteristics from preinjection surveys. By using this learned knowledge, our approach accurately discerns <span><math display=\"inline\" overflow=\"scroll\"><mrow><msub><mi>CO</mi><mn>2</mn></msub></mrow></math></span>-induced subtle signals from the high-amplitude time-lapse noise, ensuring fidelity in monitoring while reducing costs by enabling sparse acquisition. We evaluate our method using synthetic data and field data acquired in the Aquistore project. In the synthetic experiments, we simulate time-lapse noise by incorporating random near-surface effects in the elastic properties of the subsurface model. We train our neural networks exclusively on preinjection seismic images and subsequently predict <span><math display=\"inline\" overflow=\"scroll\"><mrow><msub><mi>CO</mi><mn>2</mn></msub></mrow></math></span> locations from postinjection seismic images. In the field data analysis from Aquistore, the images from preinjection surveys are used to train the neural networks with the characteristics of time-lapse noise, followed by identifying <span><math display=\"inline\" overflow=\"scroll\"><mrow><msub><mi>CO</mi><mn>2</mn></msub></mrow></math></span> plumes within two postinjection surveys. The outcomes demonstrate the improved accuracy achieved by DeepNRMS, effectively addressing the strong time-lapse noise.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":"32 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1190/geo2023-0608.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring stored CO2 in carbon capture and storage projects is crucial for ensuring safety and effectiveness. We introduce DeepNRMS, a novel noise-robust method that effectively handles time-lapse noise in seismic images. The DeepNRMS leverages unsupervised deep learning to acquire knowledge of time-lapse noise characteristics from preinjection surveys. By using this learned knowledge, our approach accurately discerns CO2-induced subtle signals from the high-amplitude time-lapse noise, ensuring fidelity in monitoring while reducing costs by enabling sparse acquisition. We evaluate our method using synthetic data and field data acquired in the Aquistore project. In the synthetic experiments, we simulate time-lapse noise by incorporating random near-surface effects in the elastic properties of the subsurface model. We train our neural networks exclusively on preinjection seismic images and subsequently predict CO2 locations from postinjection seismic images. In the field data analysis from Aquistore, the images from preinjection surveys are used to train the neural networks with the characteristics of time-lapse noise, followed by identifying CO2 plumes within two postinjection surveys. The outcomes demonstrate the improved accuracy achieved by DeepNRMS, effectively addressing the strong time-lapse noise.
DeepNRMS:在延时地震图像中进行无监督深度学习以监测不含噪声的二氧化碳含量
监测碳捕集与封存项目中封存的二氧化碳对确保安全和有效性至关重要。我们介绍了 DeepNRMS,这是一种能有效处理地震图像中延时噪声的新型噪声抑制方法。DeepNRMS 利用无监督深度学习从注入前勘测中获取延时噪声特征的知识。通过利用这些学习到的知识,我们的方法能从高振幅延时噪声中准确分辨出二氧化碳诱发的微妙信号,确保监测的真实性,同时通过稀疏采集降低成本。我们利用在 Aquistore 项目中获取的合成数据和现场数据对我们的方法进行了评估。在合成实验中,我们通过在地下模型的弹性特性中加入随机近地表效应来模拟延时噪声。我们完全根据注入前的地震图像训练神经网络,然后根据注入后的地震图像预测二氧化碳的位置。在 Aquistore 的野外数据分析中,我们使用注水前勘探的图像来训练具有延时噪声特征的神经网络,然后在两次注水后勘探中识别二氧化碳羽流。结果表明,DeepNRMS 提高了准确性,有效解决了强延时噪声问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysics
Geophysics 地学-地球化学与地球物理
CiteScore
6.90
自引率
18.20%
发文量
354
审稿时长
3 months
期刊介绍: Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics. Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research. Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring. The PDF format of each Geophysics paper is the official version of record.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信