{"title":"Column generation based solution for bi-objective gate assignment problems","authors":"Gülesin Sena Daş, Fatma Gzara","doi":"10.1007/s00186-024-00856-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a column generation-based algorithm for the bi-objective gate assignment problem (GAP) to generate gate schedules that minimize squared slack time at the gates while satisfying passenger expectations by minimizing their walking distance. While most of the literature focuses on heuristic or metaheuristic solutions for the bi-objective GAP, we propose flow-based and column-based models that lead to exact or near optimal solution approaches. The developed algorithm calculates a set of solutions to approximate the Pareto front. The algorithm is applied to the over-constrained GAP where gates are a limited resource and it is not possible to serve every flight using a gate. Our test cases are based on real data from an international airport and include various instances with flight-to-gate ratios between 23.9 and 34.7. Numerical results reveal that a set of solutions representing a compromise between the passenger-oriented and robustness-oriented objectives may be obtained with a tight optimality gap and within reasonable computational time even for these difficult problems.</p>","PeriodicalId":49862,"journal":{"name":"Mathematical Methods of Operations Research","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00186-024-00856-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a column generation-based algorithm for the bi-objective gate assignment problem (GAP) to generate gate schedules that minimize squared slack time at the gates while satisfying passenger expectations by minimizing their walking distance. While most of the literature focuses on heuristic or metaheuristic solutions for the bi-objective GAP, we propose flow-based and column-based models that lead to exact or near optimal solution approaches. The developed algorithm calculates a set of solutions to approximate the Pareto front. The algorithm is applied to the over-constrained GAP where gates are a limited resource and it is not possible to serve every flight using a gate. Our test cases are based on real data from an international airport and include various instances with flight-to-gate ratios between 23.9 and 34.7. Numerical results reveal that a set of solutions representing a compromise between the passenger-oriented and robustness-oriented objectives may be obtained with a tight optimality gap and within reasonable computational time even for these difficult problems.
期刊介绍:
This peer reviewed journal publishes original and high-quality articles on important mathematical and computational aspects of operations research, in particular in the areas of continuous and discrete mathematical optimization, stochastics, and game theory. Theoretically oriented papers are supposed to include explicit motivations of assumptions and results, while application oriented papers need to contain substantial mathematical contributions. Suggestions for algorithms should be accompanied with numerical evidence for their superiority over state-of-the-art methods. Articles must be of interest for a large audience in operations research, written in clear and correct English, and typeset in LaTeX. A special section contains invited tutorial papers on advanced mathematical or computational aspects of operations research, aiming at making such methodologies accessible for a wider audience.
All papers are refereed. The emphasis is on originality, quality, and importance.