An algorithm to recognize echelon subgroups of a free group

IF 0.5 2区 数学 Q3 MATHEMATICS
Dario Ascari
{"title":"An algorithm to recognize echelon subgroups of a free group","authors":"Dario Ascari","doi":"10.1142/s021819672450019x","DOIUrl":null,"url":null,"abstract":"<p>We provide an algorithm that, given a finite set of generators for a subgroup <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>H</mi></math></span><span></span> of a finitely generated free group <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>F</mi></math></span><span></span>, determines whether <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>H</mi></math></span><span></span> is echelon or not and, in case of affirmative answer, also computes a basis with respect to which <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>H</mi></math></span><span></span> is in echelon form. This gives an answer to a question of Rosenmann. We also prove, by means of a counterexample, that intersection of two echelon subgroups needs not to be echelon, answering another question of Rosenmann.</p>","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s021819672450019x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We provide an algorithm that, given a finite set of generators for a subgroup H of a finitely generated free group F, determines whether H is echelon or not and, in case of affirmative answer, also computes a basis with respect to which H is in echelon form. This gives an answer to a question of Rosenmann. We also prove, by means of a counterexample, that intersection of two echelon subgroups needs not to be echelon, answering another question of Rosenmann.

识别自由群梯形子群的算法
我们提供了一种算法,只要给定有限生成的自由群 F 的子群 H 的有限生成子集,就能确定 H 是否为梯形,如果答案是肯定的,还能计算出 H 为梯形的基。这就回答了罗森曼的一个问题。我们还通过一个反例证明了两个梯形子群的交集不一定是梯形,从而回答了罗森曼的另一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
66
审稿时长
6-12 weeks
期刊介绍: The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信