Dierk Raabe, Matic Jovičević-Klug, Dirk Ponge, Alexander Gramlich, Alisson Kwiatkowski da Silva, A. Nicholas Grundy, Hauke Springer, Isnaldi Souza Filho, Yan Ma
{"title":"Circular Steel for Fast Decarbonization: Thermodynamics, Kinetics, and Microstructure Behind Upcycling Scrap into High-Performance Sheet Steel","authors":"Dierk Raabe, Matic Jovičević-Klug, Dirk Ponge, Alexander Gramlich, Alisson Kwiatkowski da Silva, A. Nicholas Grundy, Hauke Springer, Isnaldi Souza Filho, Yan Ma","doi":"10.1146/annurev-matsci-080222-123648","DOIUrl":null,"url":null,"abstract":"Steel production accounts for approximately 8% of all global CO<jats:sub>2</jats:sub> emissions, with the primary steelmaking route using iron ores accounting for about 80% of those emissions, mainly due to the use of fossil-based reductants and fuel. Hydrogen-based reduction of iron oxide is an alternative for primary synthesis. However, to counteract global warming, decarbonization of the steel sector must proceed much faster than the ongoing transition kinetics in primary steelmaking. Insufficient supply of green hydrogen is a particular bottleneck. Realizing a higher fraction of secondary steelmaking thus is gaining momentum as a sustainable alternative to primary production. Steel production from scrap is well established for long products (rails, bars, wire), but there are two main challenges. First, there is not sufficient scrap available to satisfy market needs. Today, only one-third of global steel demand can be met by secondary metallurgy using scrap since many steel products have a lifetime of several decades. However, scrap availability will increase to about two-thirds of total demand by 2050 such that this sector will grow massively in the next decades. Second, scrap is often too contaminated to produce high-performance sheet steels. This is a serious obstacle because advanced products demand explicit low-tolerance specifications for safety-critical and high-strength steels, such as for electric vehicles, energy conversion and grids, high-speed trains, sustainable buildings, and infrastructure. Therefore, we review the metallurgical and microstructural challenges and opportunities for producing high-performance sheet steels via secondary synthesis. Focus is placed on the thermodynamic, kinetic, chemical, and microstructural fundamentals as well as the effects of scrap-related impurities on steel properties.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1146/annurev-matsci-080222-123648","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Steel production accounts for approximately 8% of all global CO2 emissions, with the primary steelmaking route using iron ores accounting for about 80% of those emissions, mainly due to the use of fossil-based reductants and fuel. Hydrogen-based reduction of iron oxide is an alternative for primary synthesis. However, to counteract global warming, decarbonization of the steel sector must proceed much faster than the ongoing transition kinetics in primary steelmaking. Insufficient supply of green hydrogen is a particular bottleneck. Realizing a higher fraction of secondary steelmaking thus is gaining momentum as a sustainable alternative to primary production. Steel production from scrap is well established for long products (rails, bars, wire), but there are two main challenges. First, there is not sufficient scrap available to satisfy market needs. Today, only one-third of global steel demand can be met by secondary metallurgy using scrap since many steel products have a lifetime of several decades. However, scrap availability will increase to about two-thirds of total demand by 2050 such that this sector will grow massively in the next decades. Second, scrap is often too contaminated to produce high-performance sheet steels. This is a serious obstacle because advanced products demand explicit low-tolerance specifications for safety-critical and high-strength steels, such as for electric vehicles, energy conversion and grids, high-speed trains, sustainable buildings, and infrastructure. Therefore, we review the metallurgical and microstructural challenges and opportunities for producing high-performance sheet steels via secondary synthesis. Focus is placed on the thermodynamic, kinetic, chemical, and microstructural fundamentals as well as the effects of scrap-related impurities on steel properties.
期刊介绍:
The Annual Review of Materials Research, published since 1971, is a journal that covers significant developments in the field of materials research. It includes original methodologies, materials phenomena, material systems, and special keynote topics. The current volume of the journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The journal defines its scope as encompassing significant developments in materials science, including methodologies for studying materials and materials phenomena. It is indexed and abstracted in various databases, such as Scopus, Science Citation Index Expanded, Civil Engineering Abstracts, INSPEC, and Academic Search, among others.