Nicole Funk, Josef Knott, Joachim Pander, Juergen Geist
{"title":"Fish behavior at the horizontal screen of a novel shaft hydropower plant","authors":"Nicole Funk, Josef Knott, Joachim Pander, Juergen Geist","doi":"10.1002/rra.4302","DOIUrl":null,"url":null,"abstract":"Preventing fish entrainment during their downstream passage at hydropower plants remains a major challenge in reducing the ecological impacts of hydropower production. We investigated fish behavior at the world's first innovative shaft hydropower plant with its novel screen concept, aiming at reducing fish entrainment due to the fully horizontal arrangement of the screen and low vertical suction effects toward the turbine. Based on ARIS sonar recordings, we assessed whether fish could move unhindered across the turbine intake area toward the bypass corridors at the sluice gate for safe downstream passage. For a range of species (<jats:italic>Anguilla anguilla</jats:italic>, <jats:italic>Barbus barbus</jats:italic>, <jats:italic>Thymallus thymallus</jats:italic>, <jats:italic>Salmo trutta</jats:italic>, and <jats:italic>Hucho hucho</jats:italic>) and operation modes (high/low turbine load), we assessed behavioral patterns such as screen avoidance, dwelling behavior, and search behavior at the screen. Contrary to the engineers' expectations, the innovative screen arrangement neither guided the fish away from the turbine intake to the bypass corridors nor prevented them from swimming vertically into the turbine shaft. Rather, fish freely moved near the screen and avoidance behavior was only rarely observed. Both the dwelling and active search behavior, which was particularly evident in eel, are directly linked to an increased risk of screen passage and subsequent turbine‐related death or injuries. Our findings illustrate that consideration of fish behavior at turbine inlet structures is a crucial component which needs to be integrated with other variables such as fish mortality and injury patterns for a comprehensive evaluation and improvement of fish passage at hydropower plants.","PeriodicalId":21513,"journal":{"name":"River Research and Applications","volume":"119 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"River Research and Applications","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rra.4302","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Preventing fish entrainment during their downstream passage at hydropower plants remains a major challenge in reducing the ecological impacts of hydropower production. We investigated fish behavior at the world's first innovative shaft hydropower plant with its novel screen concept, aiming at reducing fish entrainment due to the fully horizontal arrangement of the screen and low vertical suction effects toward the turbine. Based on ARIS sonar recordings, we assessed whether fish could move unhindered across the turbine intake area toward the bypass corridors at the sluice gate for safe downstream passage. For a range of species (Anguilla anguilla, Barbus barbus, Thymallus thymallus, Salmo trutta, and Hucho hucho) and operation modes (high/low turbine load), we assessed behavioral patterns such as screen avoidance, dwelling behavior, and search behavior at the screen. Contrary to the engineers' expectations, the innovative screen arrangement neither guided the fish away from the turbine intake to the bypass corridors nor prevented them from swimming vertically into the turbine shaft. Rather, fish freely moved near the screen and avoidance behavior was only rarely observed. Both the dwelling and active search behavior, which was particularly evident in eel, are directly linked to an increased risk of screen passage and subsequent turbine‐related death or injuries. Our findings illustrate that consideration of fish behavior at turbine inlet structures is a crucial component which needs to be integrated with other variables such as fish mortality and injury patterns for a comprehensive evaluation and improvement of fish passage at hydropower plants.
期刊介绍:
River Research and Applications , previously published as Regulated Rivers: Research and Management (1987-2001), is an international journal dedicated to the promotion of basic and applied scientific research on rivers. The journal publishes original scientific and technical papers on biological, ecological, geomorphological, hydrological, engineering and geographical aspects related to rivers in both the developed and developing world. Papers showing how basic studies and new science can be of use in applied problems associated with river management, regulation and restoration are encouraged as is interdisciplinary research concerned directly or indirectly with river management problems.