{"title":"GTSE1 promotes nasopharyngeal carcinoma proliferation and angiogenesis by upregulating STMN1","authors":"Jiadi Dong, Jingjing Chen, Yidong Wu, Jiangyu Yan","doi":"10.1186/s13008-024-00119-9","DOIUrl":null,"url":null,"abstract":"Nasopharyngeal carcinoma (NPC) is a malignant tumor with poor survival rate. G2 and S phase-expressed‐1 (GTSE1) takes part in the progression of diverse tumors as an oncogene, but its role and potential mechanism in NPC remain unknown. The GTSE1 expression was analyzed by western blot in NPC tissues and cells. Knock-down experiments were conducted to determine the function of GTSE1 in NPC by cell counting kit-8, the 5-ethynyl-2′-deoxyuridine (EdU) incorporation experiment, cell scratch wound-healing experiment, transwell assays, tube forming experiment and western blot. In addition, the in vivo role of GTSE1 was addressed in tumor-bearing mice. The expression of was increased in NPC. Silencing of GTSE1 suppressed cell viability, the percent of EdU positive cells, and the number of invasion cells and tubes, but enhanced the scratch ratio in NPC cells. Mechanically, downregulation of GTSE1 decreased the expressions of FOXM1 and STMN1, which were restored with the upregulation of FOXM1. Increased expression of STMN1 reversed the effects of the GTSE1 silencing on proliferation, migration, invasion and angiogenesis of NPC cells. Furthermore, knockdown of GTSE1 repressed the tumor volume and tumor weight of xenografted mice. GTSE1 was highly expressed in NPC, and silencing of GTSE1 ameliorated the malignant processes of NPC cells by upregulating STMN1, suggesting a possible therapeutical target for NPC.","PeriodicalId":49263,"journal":{"name":"Cell Division","volume":"17 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Division","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13008-024-00119-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor with poor survival rate. G2 and S phase-expressed‐1 (GTSE1) takes part in the progression of diverse tumors as an oncogene, but its role and potential mechanism in NPC remain unknown. The GTSE1 expression was analyzed by western blot in NPC tissues and cells. Knock-down experiments were conducted to determine the function of GTSE1 in NPC by cell counting kit-8, the 5-ethynyl-2′-deoxyuridine (EdU) incorporation experiment, cell scratch wound-healing experiment, transwell assays, tube forming experiment and western blot. In addition, the in vivo role of GTSE1 was addressed in tumor-bearing mice. The expression of was increased in NPC. Silencing of GTSE1 suppressed cell viability, the percent of EdU positive cells, and the number of invasion cells and tubes, but enhanced the scratch ratio in NPC cells. Mechanically, downregulation of GTSE1 decreased the expressions of FOXM1 and STMN1, which were restored with the upregulation of FOXM1. Increased expression of STMN1 reversed the effects of the GTSE1 silencing on proliferation, migration, invasion and angiogenesis of NPC cells. Furthermore, knockdown of GTSE1 repressed the tumor volume and tumor weight of xenografted mice. GTSE1 was highly expressed in NPC, and silencing of GTSE1 ameliorated the malignant processes of NPC cells by upregulating STMN1, suggesting a possible therapeutical target for NPC.
期刊介绍:
Cell Division is an open access, peer-reviewed journal that encompasses all the molecular aspects of cell cycle control and cancer, cell growth, proliferation, survival, differentiation, signalling, gene transcription, protein synthesis, genome integrity, chromosome stability, centrosome duplication, DNA damage and DNA repair.
Cell Division provides an online forum for the cell-cycle community that aims to publish articles on all exciting aspects of cell-cycle research and to bridge the gap between models of cell cycle regulation, development, and cancer biology. This forum is driven by specialized and timely research articles, reviews and commentaries focused on this fast moving field, providing an invaluable tool for cell-cycle biologists.
Cell Division publishes articles in areas which includes, but not limited to:
DNA replication, cell fate decisions, cell cycle & development
Cell proliferation, mitosis, spindle assembly checkpoint, ubiquitin mediated degradation
DNA damage & repair
Apoptosis & cell death