Unification in the description logic $\mathcal{FL}_\bot$

Barbara Morawska
{"title":"Unification in the description logic $\\mathcal{FL}_\\bot$","authors":"Barbara Morawska","doi":"arxiv-2405.00912","DOIUrl":null,"url":null,"abstract":"Description Logics are a formalism used in the knowledge representation,\nwhere the knowledge is captured in the form of concepts constructed in a\ncontrolled way from a restricted vocabulary. This allows one to test\neffectively for consistency of and the subsumption between the concepts.\nUnification of concepts may likewise become a useful tool in analysing the\nrelations between concepts. The unification problem has been solved for the\ndescription logics $\\mathcal{FL}_0$ and $\\mathcal{EL}$. These small logics do\nnot provide any means to express negation. Here we show an algorithm solving\nunification in $\\mathcal{FL}_\\bot$, the logic that extends $\\mathcal{FL}_0$\nwith the bottom concept. Bottom allows one to express that two concepts are\ndisjoint. Our algorithm runs in exponential time, with respect to the size of\nthe problem.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.00912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Description Logics are a formalism used in the knowledge representation, where the knowledge is captured in the form of concepts constructed in a controlled way from a restricted vocabulary. This allows one to test effectively for consistency of and the subsumption between the concepts. Unification of concepts may likewise become a useful tool in analysing the relations between concepts. The unification problem has been solved for the description logics $\mathcal{FL}_0$ and $\mathcal{EL}$. These small logics do not provide any means to express negation. Here we show an algorithm solving unification in $\mathcal{FL}_\bot$, the logic that extends $\mathcal{FL}_0$ with the bottom concept. Bottom allows one to express that two concepts are disjoint. Our algorithm runs in exponential time, with respect to the size of the problem.
描述逻辑中的统一 $\mathcal{FL}_\bot$
描述逻辑学是一种用于知识表示的形式主义,在这种形式主义中,知识以概念的形式被捕获,这些概念是以受控的方式从一个受限的词汇表中构建出来的。概念的统一同样可以成为分析概念之间关系的有用工具。统一问题已经在描述逻辑$\mathcal{FL}_0$和$\mathcal{EL}$中得到了解决。这些小逻辑没有提供任何表达否定的方法。在这里,我们展示了一种在 $\mathcal{FL}_\bot$ 中求解统一的算法,这种逻辑用底部概念扩展了 $\mathcal{FL}_0$ 。底层概念允许我们表达两个概念是不相交的。我们的算法运行时间与问题的大小成指数关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信