Davide Venturelli, Sarah A. M. Loos, Benjamin Walter, Édgar Roldán and Andrea Gambassi
{"title":"Stochastic thermodynamics of a probe in a fluctuating correlated field","authors":"Davide Venturelli, Sarah A. M. Loos, Benjamin Walter, Édgar Roldán and Andrea Gambassi","doi":"10.1209/0295-5075/ad3469","DOIUrl":null,"url":null,"abstract":"We develop a framework for the stochastic thermodynamics of a probe coupled to a fluctuating medium with spatio-temporal correlations, described by a scalar field. For a Brownian particle dragged by a harmonic trap through a fluctuating Gaussian field, we show that near criticality (where the field displays long-range spatial correlations) the spatially-resolved average heat flux develops a dipolar structure, where heat is absorbed in front and dissipated behind the dragged particle. Moreover, a perturbative calculation reveals that the dissipated power displays three distinct dynamical regimes depending on the drag velocity.","PeriodicalId":11738,"journal":{"name":"EPL","volume":"45 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad3469","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We develop a framework for the stochastic thermodynamics of a probe coupled to a fluctuating medium with spatio-temporal correlations, described by a scalar field. For a Brownian particle dragged by a harmonic trap through a fluctuating Gaussian field, we show that near criticality (where the field displays long-range spatial correlations) the spatially-resolved average heat flux develops a dipolar structure, where heat is absorbed in front and dissipated behind the dragged particle. Moreover, a perturbative calculation reveals that the dissipated power displays three distinct dynamical regimes depending on the drag velocity.
期刊介绍:
General physics – physics of elementary particles and fields – nuclear physics – atomic, molecular and optical physics – classical areas of phenomenology – physics of gases, plasmas and electrical discharges – condensed matter – cross-disciplinary physics and related areas of science and technology.
Letters submitted to EPL should contain new results, ideas, concepts, experimental methods, theoretical treatments, including those with application potential and be of broad interest and importance to one or several sections of the physics community. The presentation should satisfy the specialist, yet remain understandable to the researchers in other fields through a suitable, clearly written introduction and conclusion (if appropriate).
EPL also publishes Comments on Letters previously published in the Journal.