{"title":"Irrigation strongly influences near‐surface conditions and induces breeze circulation: Observational and model‐based evidence","authors":"Tanguy Lunel, Aaron A. Boone, Patrick Le Moigne","doi":"10.1002/qj.4736","DOIUrl":null,"url":null,"abstract":"Irrigation is becoming increasingly common in agriculture and is essential to meet the growing demand for food. Studies of the impact of irrigated areas on local meteorology reveal a strong influence on near‐surface conditions, although the extent of this influence varies considerably between locations. In addition, though theoretical evidence suggests that irrigation can create breeze‐like atmospheric boundary‐layer circulations, observational evidence is still lacking. This study investigates the effects of irrigation on the surface and atmospheric boundary layer in the Ebro basin, an intensively irrigated area with a semi‐arid climate in northeastern Spain. Observational data from the international field campaign Land Surface Interactions with the Atmosphere over the Iberian Semi‐arid Environment are analysed together with coupled surface–atmosphere model output to better understand and quantify the impact of irrigation on the lower atmosphere. A simple parametrization of irrigation is shown to improve the accuracy of the model. Results demonstrate that irrigation increases the average latent heat flux by over 200 Wm, reduces air temperature by 4.7°C, and increases specific humidity by 50% at 2 m during the day over the irrigated region of the domain. Moreover, irrigation limits convection and strongly stabilizes the atmospheric boundary layer. Notably, the study provides evidence for an irrigation‐induced breeze from the irrigated area to the semi‐arid area. These findings highlight the importance of considering irrigation in numerical models for weather forecasting, climate modelling and sustainable agricultural planning.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":"23 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4736","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Irrigation is becoming increasingly common in agriculture and is essential to meet the growing demand for food. Studies of the impact of irrigated areas on local meteorology reveal a strong influence on near‐surface conditions, although the extent of this influence varies considerably between locations. In addition, though theoretical evidence suggests that irrigation can create breeze‐like atmospheric boundary‐layer circulations, observational evidence is still lacking. This study investigates the effects of irrigation on the surface and atmospheric boundary layer in the Ebro basin, an intensively irrigated area with a semi‐arid climate in northeastern Spain. Observational data from the international field campaign Land Surface Interactions with the Atmosphere over the Iberian Semi‐arid Environment are analysed together with coupled surface–atmosphere model output to better understand and quantify the impact of irrigation on the lower atmosphere. A simple parametrization of irrigation is shown to improve the accuracy of the model. Results demonstrate that irrigation increases the average latent heat flux by over 200 Wm, reduces air temperature by 4.7°C, and increases specific humidity by 50% at 2 m during the day over the irrigated region of the domain. Moreover, irrigation limits convection and strongly stabilizes the atmospheric boundary layer. Notably, the study provides evidence for an irrigation‐induced breeze from the irrigated area to the semi‐arid area. These findings highlight the importance of considering irrigation in numerical models for weather forecasting, climate modelling and sustainable agricultural planning.
期刊介绍:
The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues.
The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.