Almansi-Type Decomposition for Slice Regular Functions of Several Quaternionic Variables

Pub Date : 2024-04-29 DOI:10.1007/s11785-024-01529-x
Giulio Binosi
{"title":"Almansi-Type Decomposition for Slice Regular Functions of Several Quaternionic Variables","authors":"Giulio Binosi","doi":"10.1007/s11785-024-01529-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper we propose an Almansi-type decomposition for slice regular functions of several quaternionic variables. Our method yields <span>\\(2^n\\)</span> distinct and unique decompositions for any slice function with domain in <span>\\(\\mathbb {H}^n\\)</span>. Depending on the choice of the decomposition, every component is given explicitly, uniquely determined and exhibits desirable properties, such as harmonicity and circularity in the selected variables. As consequences of these decompositions, we give another proof of Fueter’s Theorem in <span>\\(\\mathbb {H}^n\\)</span>, establish the biharmonicity of slice regular functions in every variable and derive mean value and Poisson formulas for them.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01529-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we propose an Almansi-type decomposition for slice regular functions of several quaternionic variables. Our method yields \(2^n\) distinct and unique decompositions for any slice function with domain in \(\mathbb {H}^n\). Depending on the choice of the decomposition, every component is given explicitly, uniquely determined and exhibits desirable properties, such as harmonicity and circularity in the selected variables. As consequences of these decompositions, we give another proof of Fueter’s Theorem in \(\mathbb {H}^n\), establish the biharmonicity of slice regular functions in every variable and derive mean value and Poisson formulas for them.

分享
查看原文
多个四元变量的片正则函数的阿尔曼西式分解
在本文中,我们为多个四元变量的切片正则函数提出了一种阿尔曼斯式分解法。我们的方法可以为任何域在\(\mathbb {H}^n\)中的切片函数得到\(2^n\)个不同且唯一的分解。根据分解的选择,每个分量都是明确给出的、唯一确定的,并表现出理想的特性,如所选变量的谐波性和循环性。作为这些分解的结果,我们给出了 Fueter 定理在 \(\mathbb {H}^n\) 中的另一个证明,建立了片正则函数在每个变量中的双调和性,并推导出了它们的均值和泊松公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信