{"title":"Orthogonal Exponential Functions on the Three-Dimensional Sierpinski Gasket","authors":"Zhi-Min Wang","doi":"10.1007/s11785-024-01536-y","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\xi \\in \\mathbb {R}\\)</span>, and <span>\\(\\rho _i\\in \\mathbb {R}\\)</span> with <span>\\(0<|\\rho _i|<1\\)</span> for <span>\\(1\\le i\\le 3\\)</span>. For an expanding real matrix </p><span>$$\\begin{aligned} M=\\begin{bmatrix} \\rho _1^{-1}&{}0&{}\\xi \\\\ 0&{}\\rho _2^{-1}&{}-\\xi \\\\ 0&{}0&{}\\rho _3^{-1} \\end{bmatrix}\\in M_3(\\mathbb {R}) \\end{aligned}$$</span><p>and an integer digit set <span>\\(D=\\{(0,0,0)^t, (1,0,0)^t, (0,1,0)^t, (0,0,1)^t \\}\\subset \\mathbb {Z}^3\\)</span>, let <span>\\(\\mu _{M,D}\\)</span> be the self-affine measure defined by <span>\\(\\mu _{M,D}(\\cdot )=\\frac{1}{|D|}\\sum _{d\\in D}\\mu _{M,D}(M(\\cdot )-d)\\)</span>. In this paper, we prove that if <span>\\(\\rho _1=\\rho _2\\)</span>, then <span>\\(L^2(\\mu _{M,D})\\)</span> admits an infinite orthogonal set of exponential functions if and only if <span>\\(|\\rho _i|=(p_i/q_i)^{\\frac{1}{r_i}}\\)</span> for some <span>\\(p_i,q_i,r_i\\in \\mathbb {N}^+\\)</span> with <span>\\(\\gcd (p_i,q_i)=1\\)</span> and <span>\\(2|q_i\\)</span>, <span>\\(i=1,2\\)</span>. In particular, if <span>\\(\\rho _1,\\rho _2,\\rho _3\\in \\{\\frac{p}{q}:p,q\\in 2\\mathbb {Z}+1\\}\\)</span> and <span>\\(\\rho _1=\\rho _2\\)</span>, then there exist at most 4 mutually orthogonal exponential functions in <span>\\(L^2(\\mu _{M,D})\\)</span>, and the number 4 is the best.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01536-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let \(\xi \in \mathbb {R}\), and \(\rho _i\in \mathbb {R}\) with \(0<|\rho _i|<1\) for \(1\le i\le 3\). For an expanding real matrix
and an integer digit set \(D=\{(0,0,0)^t, (1,0,0)^t, (0,1,0)^t, (0,0,1)^t \}\subset \mathbb {Z}^3\), let \(\mu _{M,D}\) be the self-affine measure defined by \(\mu _{M,D}(\cdot )=\frac{1}{|D|}\sum _{d\in D}\mu _{M,D}(M(\cdot )-d)\). In this paper, we prove that if \(\rho _1=\rho _2\), then \(L^2(\mu _{M,D})\) admits an infinite orthogonal set of exponential functions if and only if \(|\rho _i|=(p_i/q_i)^{\frac{1}{r_i}}\) for some \(p_i,q_i,r_i\in \mathbb {N}^+\) with \(\gcd (p_i,q_i)=1\) and \(2|q_i\), \(i=1,2\). In particular, if \(\rho _1,\rho _2,\rho _3\in \{\frac{p}{q}:p,q\in 2\mathbb {Z}+1\}\) and \(\rho _1=\rho _2\), then there exist at most 4 mutually orthogonal exponential functions in \(L^2(\mu _{M,D})\), and the number 4 is the best.