Decomposition complexity growth of finitely generated groups

IF 0.5 4区 数学 Q3 MATHEMATICS
Trevor Davila
{"title":"Decomposition complexity growth of finitely generated groups","authors":"Trevor Davila","doi":"10.1007/s10711-024-00924-0","DOIUrl":null,"url":null,"abstract":"<p>Finite decomposition complexity and asymptotic dimension growth are two generalizations of M. Gromov’s asymptotic dimension which can be used to prove property A for large classes of finitely generated groups of infinite asymptotic dimension. In this paper, we introduce the notion of decomposition complexity growth, which is a quasi-isometry invariant generalizing both finite decomposition complexity and dimension growth. We show that subexponential decomposition complexity growth implies property A, and is preserved by certain group and metric constructions.</p>","PeriodicalId":55103,"journal":{"name":"Geometriae Dedicata","volume":"14 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometriae Dedicata","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00924-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Finite decomposition complexity and asymptotic dimension growth are two generalizations of M. Gromov’s asymptotic dimension which can be used to prove property A for large classes of finitely generated groups of infinite asymptotic dimension. In this paper, we introduce the notion of decomposition complexity growth, which is a quasi-isometry invariant generalizing both finite decomposition complexity and dimension growth. We show that subexponential decomposition complexity growth implies property A, and is preserved by certain group and metric constructions.

有限生成群的分解复杂性增长
有限分解复杂性和渐近维数增长是格罗莫夫(M. Gromov)渐近维数的两个概括,可用来证明无限渐近维数的有限生成群大类的性质 A。在本文中,我们引入了分解复杂度增长的概念,它是对有限分解复杂度和维度增长的准等效不变式概括。我们证明了亚指数分解复杂性增长意味着性质 A,并通过某些群和度量构造得以保留。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geometriae Dedicata
Geometriae Dedicata 数学-数学
CiteScore
0.90
自引率
0.00%
发文量
78
审稿时长
4-8 weeks
期刊介绍: Geometriae Dedicata concentrates on geometry and its relationship to topology, group theory and the theory of dynamical systems. Geometriae Dedicata aims to be a vehicle for excellent publications in geometry and related areas. Features of the journal will include: A fast turn-around time for articles. Special issues centered on specific topics. All submitted papers should include some explanation of the context of the main results. Geometriae Dedicata was founded in 1972 on the initiative of Hans Freudenthal in Utrecht, the Netherlands, who viewed geometry as a method rather than as a field. The present Board of Editors tries to continue in this spirit. The steady growth of the journal since its foundation is witness to the validity of the founder''s vision and to the success of the Editors'' mission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信