Sepehr Afsharipour, Mohammad Amin Raeisi Estabragh, Amirhossein Namaki, Mandana Ohadi, Mohammad Hassan Moshafi, Ibrahim M. Banat, Gholamreza Dehghannoudeh
{"title":"Preparation and Physicochemical Properties of a Thermosensitive Hydrogel-based Lipopeptide Biosurfactant","authors":"Sepehr Afsharipour, Mohammad Amin Raeisi Estabragh, Amirhossein Namaki, Mandana Ohadi, Mohammad Hassan Moshafi, Ibrahim M. Banat, Gholamreza Dehghannoudeh","doi":"10.2174/0115701808296878240419065845","DOIUrl":null,"url":null,"abstract":"Background: Temperature-sensitive (thermo-sensitive) formulations are a novel drug delivery dosage form that shows bio-inspired behavior in various applications. The structure and properties of a thermosensitive polymer are critical in designing an intelligent biometric polymer that contains lipopeptide biosurfactants. Objectives: In this study, thermo-sensitive hydrogels with lipopeptide biosurfactants as a potential wound dressing dosage form were formulated and examined regarding physicochemical properties. Methods: The lipopeptide biosurfactants were isolated from the Acinetobacter junni B6 bacterial strain and loaded on a formulation of poloxamer 407® and carboxymethyl cellulose as a gelling agent. Numerous experiments were carried out to evaluate the physicochemical properties of these formulations, such as the stability, spreadability, release profile, and kinetic. Results: The formulation (Poloxamer 407® (19% w/v), carboxymethyl cellulose (2% w/v), lipopeptide biosurfactants (5mg/mL), benzyl alcohol (1% v/v), and 0.1mL polyethylene glycol 400) was select as the optimum formulation. The selected formulation released 26.9% of the lipopeptide biosurfactants with anomalous transport kinetics after 10 hours. Conclusions: The results showed that a thermo-sensitive formulation could help achieve a sustained release of lipopeptide biosurfactants and potentially be used as a dressing formulation for wounds in future studies.","PeriodicalId":18059,"journal":{"name":"Letters in Drug Design & Discovery","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Drug Design & Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115701808296878240419065845","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Temperature-sensitive (thermo-sensitive) formulations are a novel drug delivery dosage form that shows bio-inspired behavior in various applications. The structure and properties of a thermosensitive polymer are critical in designing an intelligent biometric polymer that contains lipopeptide biosurfactants. Objectives: In this study, thermo-sensitive hydrogels with lipopeptide biosurfactants as a potential wound dressing dosage form were formulated and examined regarding physicochemical properties. Methods: The lipopeptide biosurfactants were isolated from the Acinetobacter junni B6 bacterial strain and loaded on a formulation of poloxamer 407® and carboxymethyl cellulose as a gelling agent. Numerous experiments were carried out to evaluate the physicochemical properties of these formulations, such as the stability, spreadability, release profile, and kinetic. Results: The formulation (Poloxamer 407® (19% w/v), carboxymethyl cellulose (2% w/v), lipopeptide biosurfactants (5mg/mL), benzyl alcohol (1% v/v), and 0.1mL polyethylene glycol 400) was select as the optimum formulation. The selected formulation released 26.9% of the lipopeptide biosurfactants with anomalous transport kinetics after 10 hours. Conclusions: The results showed that a thermo-sensitive formulation could help achieve a sustained release of lipopeptide biosurfactants and potentially be used as a dressing formulation for wounds in future studies.
期刊介绍:
Aims & Scope
Letters in Drug Design & Discovery publishes letters, mini-reviews, highlights and guest edited thematic issues in all areas of rational drug design and discovery including medicinal chemistry, in-silico drug design, combinatorial chemistry, high-throughput screening, drug targets, and structure-activity relationships. The emphasis is on publishing quality papers very rapidly by taking full advantage of latest Internet technology for both submission and review of manuscripts. The online journal is an essential reading to all pharmaceutical scientists involved in research in drug design and discovery.