Finite quotients of 3-manifold groups

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Will Sawin, Melanie Matchett Wood
{"title":"Finite quotients of 3-manifold groups","authors":"Will Sawin, Melanie Matchett Wood","doi":"10.1007/s00222-024-01262-4","DOIUrl":null,"url":null,"abstract":"<p>For <span>\\(G\\)</span> and <span>\\(H_{1},\\dots , H_{n}\\)</span> finite groups, does there exist a 3-manifold group with <span>\\(G\\)</span> as a quotient but no <span>\\(H_{i}\\)</span> as a quotient? We answer all such questions in terms of the group cohomology of finite groups. We prove non-existence with topological results generalizing the theory of semicharacteristics. To prove existence of 3-manifolds with certain finite quotients but not others, we use a probabilistic method, by first proving a formula for the distribution of the (profinite completion of) the fundamental group of a random 3-manifold in the Dunfield-Thurston model of random Heegaard splittings as the genus goes to infinity. We believe this is the first construction of a new distribution of random groups from its moments.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01262-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

For \(G\) and \(H_{1},\dots , H_{n}\) finite groups, does there exist a 3-manifold group with \(G\) as a quotient but no \(H_{i}\) as a quotient? We answer all such questions in terms of the group cohomology of finite groups. We prove non-existence with topological results generalizing the theory of semicharacteristics. To prove existence of 3-manifolds with certain finite quotients but not others, we use a probabilistic method, by first proving a formula for the distribution of the (profinite completion of) the fundamental group of a random 3-manifold in the Dunfield-Thurston model of random Heegaard splittings as the genus goes to infinity. We believe this is the first construction of a new distribution of random groups from its moments.

3 个网格群的有限商
对于 \(G\) 和 \(H_{1},\dots , H_{n}\) 有限群,是否存在一个以 \(G\) 为商但没有 \(H_{i}\) 为商的 3-manifold群?我们用有限群的群同调来回答所有这些问题。我们用概括了半特征理论的拓扑结果来证明不存在。为了证明具有某些有限商而不具有其他有限商的 3-manifolds(3-manifolds)的存在性,我们使用了一种概率方法,首先证明了在随机 Heegaard 分裂的 Dunfield-Thurston 模型中,随机 3-manifold 的基群(无限完成)的分布公式。我们认为这是首次从其矩阵构造出随机群的新分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信