Limit Behavior of Order Statistics on Cycle Lengths of Random $A$-Permutations

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
A. L. Yakymiv
{"title":"Limit Behavior of Order Statistics on Cycle Lengths of Random $A$-Permutations","authors":"A. L. Yakymiv","doi":"10.1137/s0040585x97t991787","DOIUrl":null,"url":null,"abstract":"Theory of Probability &amp;Its Applications, Volume 69, Issue 1, Page 117-126, May 2024. <br/> We consider a random permutation $\\tau_n$ uniformly distributed on the set of all permutations of degree $n$ whose cycle lengths lie in a fixed set $A$ (the so-called $A$-permutations). Let $\\zeta_n$ be the total number of cycles, and let $\\eta_n(1)\\leq\\eta_n(2)\\leq\\dots\\leq\\eta_n(\\zeta_n)$ be the ordered sample of cycle lengths of the permutation $\\tau_n$. We consider a class of sets $A$ with positive density in the set of natural numbers. We study the asymptotic behavior of $\\eta_n(m)$ with numbers $m$ in the left-hand and middle parts of this series for a class of sets of positive asymptotic density. A limit theorem for the rightmost terms of this series was proved by the author of this note earlier. The study of limit properties of the sequence $\\eta_n(m)$ dates back to the paper by Shepp and Lloyd [Trans. Amer. Math. Soc., 121 (1966), pp. 340--357] who considered the case $A=\\mathbf N$.","PeriodicalId":51193,"journal":{"name":"Theory of Probability and its Applications","volume":"64 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/s0040585x97t991787","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Theory of Probability &Its Applications, Volume 69, Issue 1, Page 117-126, May 2024.
We consider a random permutation $\tau_n$ uniformly distributed on the set of all permutations of degree $n$ whose cycle lengths lie in a fixed set $A$ (the so-called $A$-permutations). Let $\zeta_n$ be the total number of cycles, and let $\eta_n(1)\leq\eta_n(2)\leq\dots\leq\eta_n(\zeta_n)$ be the ordered sample of cycle lengths of the permutation $\tau_n$. We consider a class of sets $A$ with positive density in the set of natural numbers. We study the asymptotic behavior of $\eta_n(m)$ with numbers $m$ in the left-hand and middle parts of this series for a class of sets of positive asymptotic density. A limit theorem for the rightmost terms of this series was proved by the author of this note earlier. The study of limit properties of the sequence $\eta_n(m)$ dates back to the paper by Shepp and Lloyd [Trans. Amer. Math. Soc., 121 (1966), pp. 340--357] who considered the case $A=\mathbf N$.
随机 $A$-Permutations 循环长度的阶次统计极限行为
概率论及其应用》(Theory of Probability &Its Applications),第 69 卷第 1 期,第 117-126 页,2024 年 5 月。 我们考虑一个随机排列组合 $\tau_n$,它均匀分布在所有循环长度位于一个固定集合 $A$ 的度数为 $n$ 的排列组合集合上(即所谓的 $A$-排列组合)。让 $\zeta_n$ 是循环的总数,让 $\eta_n(1)\leq\eta_n(2)\leq\dots\leq\eta_n(\zeta_n)$ 是排列 $\tau_n$ 循环长度的有序样本。我们考虑一类在自然数集合中具有正密度的集合 $A$。对于一类具有正渐近密度的集合,我们将研究$\eta_n(m)$的渐近行为,其数$m$在这个数列的左边和中间部分。本注释的作者早先证明了这个数列最右边项的极限定理。对序列 $\eta_n(m)$ 极限性质的研究可以追溯到谢普和劳埃德的论文[Trans. Amer. Math. Soc., 121 (1966), pp.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theory of Probability and its Applications
Theory of Probability and its Applications 数学-统计学与概率论
CiteScore
1.00
自引率
16.70%
发文量
54
审稿时长
6 months
期刊介绍: Theory of Probability and Its Applications (TVP) accepts original articles and communications on the theory of probability, general problems of mathematical statistics, and applications of the theory of probability to natural science and technology. Articles of the latter type will be accepted only if the mathematical methods applied are essentially new.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信