Energy Saving Approximation of Wiener Process under Unilateral Constraints

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
M. A. Lifshits, S. E. Nikitin
{"title":"Energy Saving Approximation of Wiener Process under Unilateral Constraints","authors":"M. A. Lifshits, S. E. Nikitin","doi":"10.1137/s0040585x97t99174x","DOIUrl":null,"url":null,"abstract":"Theory of Probability &amp;Its Applications, Volume 69, Issue 1, Page 59-70, May 2024. <br/> We consider an energy saving approximation of a Wiener process under unilateral constraints. We show that, almost surely, on large time intervals the minimal energy necessary for the approximation logarithmically depends on the interval length. We also construct an adaptive approximation strategy optimal in a class of diffusion strategies and providing the logarithmic order of energy consumption.","PeriodicalId":51193,"journal":{"name":"Theory of Probability and its Applications","volume":"46 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/s0040585x97t99174x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Theory of Probability &Its Applications, Volume 69, Issue 1, Page 59-70, May 2024.
We consider an energy saving approximation of a Wiener process under unilateral constraints. We show that, almost surely, on large time intervals the minimal energy necessary for the approximation logarithmically depends on the interval length. We also construct an adaptive approximation strategy optimal in a class of diffusion strategies and providing the logarithmic order of energy consumption.
单边约束条件下的维纳过程节能近似法
概率论及其应用》(Theory of Probability &Its Applications),第 69 卷第 1 期,第 59-70 页,2024 年 5 月。 我们考虑了单边约束下维纳过程的节能近似。我们证明,在大时间间隔内,近似所需的最小能量几乎肯定与时间间隔长度成对数关系。我们还构建了一类扩散策略中最优的自适应逼近策略,并提供了能量消耗的对数阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theory of Probability and its Applications
Theory of Probability and its Applications 数学-统计学与概率论
CiteScore
1.00
自引率
16.70%
发文量
54
审稿时长
6 months
期刊介绍: Theory of Probability and Its Applications (TVP) accepts original articles and communications on the theory of probability, general problems of mathematical statistics, and applications of the theory of probability to natural science and technology. Articles of the latter type will be accepted only if the mathematical methods applied are essentially new.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信