Joint Distributions of Generalized Integrable Increasing Processes and Their Generalized Compensators

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
D. A. Borzykh
{"title":"Joint Distributions of Generalized Integrable Increasing Processes and Their Generalized Compensators","authors":"D. A. Borzykh","doi":"10.1137/s0040585x97t991714","DOIUrl":null,"url":null,"abstract":"Theory of Probability &amp;Its Applications, Volume 69, Issue 1, Page 1-24, May 2024. <br/> Let $\\Lambda$ be the set of all boundary joint laws $\\operatorname{Law} ([X_a, A_a], [X_b, A_b])$ at times $t=a$ and $t=b$ of integrable increasing processes $(X_t)_{t \\in [a, b]}$ and their compensators $(A_t)_{t \\in [a, b]}$, which start at the initial time from an arbitrary integrable initial condition $[X_a, A_a]$. We show that $\\Lambda$ is convex and closed relative to the $\\psi$-weak topology with linearly growing gauge function $\\psi$. We obtain necessary and sufficient conditions for a probability measure $\\lambda$ on $\\mathcal{B}(\\mathbf{R}^2 \\times \\mathbf{R}^2)$ to lie in the class of measures $\\Lambda$. The main result of the paper provides, for two measures $\\mu_a$ and $\\mu_b$ on $\\mathcal{B}(\\mathbf{R}^2)$, necessary and sufficient conditions for the set $\\Lambda$ to contain a measure $\\lambda$ for which $\\mu_a$ and $\\mu_b$ are marginal distributions.","PeriodicalId":51193,"journal":{"name":"Theory of Probability and its Applications","volume":"5 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/s0040585x97t991714","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Theory of Probability &Its Applications, Volume 69, Issue 1, Page 1-24, May 2024.
Let $\Lambda$ be the set of all boundary joint laws $\operatorname{Law} ([X_a, A_a], [X_b, A_b])$ at times $t=a$ and $t=b$ of integrable increasing processes $(X_t)_{t \in [a, b]}$ and their compensators $(A_t)_{t \in [a, b]}$, which start at the initial time from an arbitrary integrable initial condition $[X_a, A_a]$. We show that $\Lambda$ is convex and closed relative to the $\psi$-weak topology with linearly growing gauge function $\psi$. We obtain necessary and sufficient conditions for a probability measure $\lambda$ on $\mathcal{B}(\mathbf{R}^2 \times \mathbf{R}^2)$ to lie in the class of measures $\Lambda$. The main result of the paper provides, for two measures $\mu_a$ and $\mu_b$ on $\mathcal{B}(\mathbf{R}^2)$, necessary and sufficient conditions for the set $\Lambda$ to contain a measure $\lambda$ for which $\mu_a$ and $\mu_b$ are marginal distributions.
广义积分递增过程的联合分布及其广义补偿器
概率论及其应用》第 69 卷第 1 期第 1-24 页,2024 年 5 月。 让 $\Lambda$ 是可积分递增过程 $(X_t)_{t \in [a、b]}$及其补偿器 $(A_t)_{t \in [a, b]}$,它们在初始时刻从任意可积分初始条件 $[X_a, A_a]$ 开始。我们证明,相对于具有线性增长规函数 $\psi$ 的 $\psi$ 弱拓扑,$\Lambda$ 是凸的和封闭的。我们得到了$\mathcal{B}(\mathbf{R}^2 \times \mathbf{R}^2)$上的概率度量$\lambda$位于度量类$\Lambda$中的必要条件和充分条件。本文的主要结果为$\mathcal{B}(\mathbf{R}^2)$上的两个度量$\mu_a$和$\mu_b$提供了集合$\Lambda$包含一个度量$\lambda$的必要条件和充分条件,其中$\mu_a$和$\mu_b$是边际分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theory of Probability and its Applications
Theory of Probability and its Applications 数学-统计学与概率论
CiteScore
1.00
自引率
16.70%
发文量
54
审稿时长
6 months
期刊介绍: Theory of Probability and Its Applications (TVP) accepts original articles and communications on the theory of probability, general problems of mathematical statistics, and applications of the theory of probability to natural science and technology. Articles of the latter type will be accepted only if the mathematical methods applied are essentially new.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信