{"title":"Tensorially absorbing inclusions of C*-algebras","authors":"Pawel Sarkowicz","doi":"10.4153/s0008414x24000324","DOIUrl":null,"url":null,"abstract":"<p>When <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {D}$</span></span></img></span></span> is strongly self-absorbing, we say an inclusion <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$B \\subseteq A$</span></span></img></span></span> of C*-algebras is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {D}$</span></span></img></span></span>-stable if it is isomorphic to the inclusion <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$B \\otimes \\mathcal {D} \\subseteq A \\otimes \\mathcal {D}$</span></span></img></span></span>. We give ultrapower characterizations and show that if a unital inclusion is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {D}$</span></span></img></span></span>-stable, then <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {D}$</span></span></img></span></span>-stability can be exhibited for countably many intermediate C*-algebras concurrently. We show that such unital embeddings between unital <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {D}$</span></span></img></span></span>-stable C*-algebras are point-norm dense in the set of all unital embeddings, and that every unital embedding between <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {D}$</span></span></img></span></span>-stable C*-algebras is approximately unitarily equivalent to a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240430053820262-0734:S0008414X24000324:S0008414X24000324_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {D}$</span></span></img></span></span>-stable embedding. Examples are provided.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"118 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x24000324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
When $\mathcal {D}$ is strongly self-absorbing, we say an inclusion $B \subseteq A$ of C*-algebras is $\mathcal {D}$-stable if it is isomorphic to the inclusion $B \otimes \mathcal {D} \subseteq A \otimes \mathcal {D}$. We give ultrapower characterizations and show that if a unital inclusion is $\mathcal {D}$-stable, then $\mathcal {D}$-stability can be exhibited for countably many intermediate C*-algebras concurrently. We show that such unital embeddings between unital $\mathcal {D}$-stable C*-algebras are point-norm dense in the set of all unital embeddings, and that every unital embedding between $\mathcal {D}$-stable C*-algebras is approximately unitarily equivalent to a $\mathcal {D}$-stable embedding. Examples are provided.