A note on the Hill–Ogden generalised strains

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Salvatore Federico
{"title":"A note on the Hill–Ogden generalised strains","authors":"Salvatore Federico","doi":"10.1177/10812865241233675","DOIUrl":null,"url":null,"abstract":"This brief contribution provides an overview of the Hill–Ogden generalised strain tensors, and some considerations on their representation in generalised (curvilinear) coordinates, in a fully covariant formalism that is adaptable to a more general theory on Riemannian manifolds. These strains may be naturally defined with covariant components or naturally defined with contravariant components. Each of these two macro-families is best suited to a specific geometrical context.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"9 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865241233675","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This brief contribution provides an overview of the Hill–Ogden generalised strain tensors, and some considerations on their representation in generalised (curvilinear) coordinates, in a fully covariant formalism that is adaptable to a more general theory on Riemannian manifolds. These strains may be naturally defined with covariant components or naturally defined with contravariant components. Each of these two macro-families is best suited to a specific geometrical context.
关于希尔-奥格登广义应变的说明
这篇简短的论文概述了希尔-奥格登广义应变张量,以及在广义(曲线)坐标中对其表示的一些考虑,这种广义应变张量采用完全协变形式主义,可适用于黎曼流形上的更一般理论。这些应变可以用协变分量自然定义,也可以用逆变分量自然定义。这两个宏家族中的每一个都最适合特定的几何环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics and Mechanics of Solids
Mathematics and Mechanics of Solids 工程技术-材料科学:综合
CiteScore
4.80
自引率
19.20%
发文量
159
审稿时长
1 months
期刊介绍: Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science. The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信