On the Coincidence between Campanato Functions and Lipschitz Functions: A New Approach via Elliptic PDES

IF 0.6 4区 数学 Q3 MATHEMATICS
Bo Li, Jinxia Li, Qingze Lin, Tianjun Shen, Chao Zhang
{"title":"On the Coincidence between Campanato Functions and Lipschitz Functions: A New Approach via Elliptic PDES","authors":"Bo Li, Jinxia Li, Qingze Lin, Tianjun Shen, Chao Zhang","doi":"10.1093/qmath/haae019","DOIUrl":null,"url":null,"abstract":"Let $({\\mathcal{M}},d,\\mu)$ be the metric measure space with a Dirichlet form $\\mathscr{E}$. In this paper, we obtain that the Campanato function and the Lipschitz function do always coincide. Our approach is based on the harmonic extension technology, which extends a function u on ${\\mathcal{M}}$ to its Poisson integral Ptu on ${\\mathcal{M}}\\times\\mathbb{R}_+$. With this tool in hand, we can utilize the same Carleson measure condition of the Poisson integral to characterize its Campanato/Lipschitz trace, and hence, they are equivalent to each other. This equivalence was previously obtained by Macías–Segovia [Adv. Math., 1979]. However, we provide a new proof, via the boundary value problem for the elliptic equation. This result indicates the famous saying of Stein–Weiss at the beginning of Chapter II in their book [Princeton Mathematical Series, No. 32, 1971].","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"19 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/qmath/haae019","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $({\mathcal{M}},d,\mu)$ be the metric measure space with a Dirichlet form $\mathscr{E}$. In this paper, we obtain that the Campanato function and the Lipschitz function do always coincide. Our approach is based on the harmonic extension technology, which extends a function u on ${\mathcal{M}}$ to its Poisson integral Ptu on ${\mathcal{M}}\times\mathbb{R}_+$. With this tool in hand, we can utilize the same Carleson measure condition of the Poisson integral to characterize its Campanato/Lipschitz trace, and hence, they are equivalent to each other. This equivalence was previously obtained by Macías–Segovia [Adv. Math., 1979]. However, we provide a new proof, via the boundary value problem for the elliptic equation. This result indicates the famous saying of Stein–Weiss at the beginning of Chapter II in their book [Princeton Mathematical Series, No. 32, 1971].
论坎帕纳托函数与 Lipschitz 函数的重合:通过椭圆 PDES 的新方法
让 $({\mathcal{M}},d,\mu)$ 是具有 Dirichlet 形式 $\mathscr{E}$ 的度量空间。在本文中,我们得到坎帕纳托函数和 Lipschitz 函数总是重合的。我们的方法基于谐波扩展技术,它将 ${mathcal{M}}$ 上的函数 u 扩展为 ${mathcal{M}}\times\mathbb{R}_+$ 上的泊松积分 Ptu。有了这个工具,我们就可以利用泊松积分的相同卡列松度量条件来表征其坎帕纳托/利普希兹痕量,因此它们是等价的。这一等价性以前由马西亚斯-塞戈维亚(Macías-Segovia)[Adv. Math., 1979]得到。然而,我们通过椭圆方程的边界值问题提供了新的证明。这一结果表明了斯坦因-韦斯在其著作[《普林斯顿数学丛书》,第 32 期,1971 年]第二章开头的名言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信