{"title":"Emerging near-infrared luminescent materials for next-generation broadband optical communications","authors":"Beibei Xu, Chaoyuan Jin, Jae-Seong Park, Huiyun Liu, Xing Lin, Junjie Cui, Daoyuan Chen, Jianrong Qiu","doi":"10.1002/inf2.12550","DOIUrl":null,"url":null,"abstract":"<p>The rapid development of emerging technologies observed in recent years, such as artificial intelligence, machine learning, mobile internet, big data, cloud computing, and the Internet of Everything, are generating escalating demands for expanding the capacity density, and speed in next-generation optical communications. This poses a significant challenge to existing communication techniques. Within this context, the integration of near-infrared broadband, tunable, and high-gain luminescent materials into silicon optical circuits or fiber architectures to transmit and modulate light shows enormous potential for advancing next-generation communication techniques. Here, this review provides an overview of the recent breakthroughs in near-infrared luminescent epitaxial/colloidal quantum dots, and metal-active-center-doped materials for broadband optical amplifiers and tunable lasers. We also expound on efforts to enhance the bandwidth and gain of these materials-based amplifiers and lasers, exploring the challenges associate with developing ultra-broadband and high-speed optical communication systems. Additionally, the potential applications in Fifth Generation Fixed Networks, integration with 5G and 6G wireless networks, compensation for current Si electronic based CMOS for high computing capability, and the prospects of these light sources for next-generation optoelectronic devices are discussed.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 8","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12550","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12550","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid development of emerging technologies observed in recent years, such as artificial intelligence, machine learning, mobile internet, big data, cloud computing, and the Internet of Everything, are generating escalating demands for expanding the capacity density, and speed in next-generation optical communications. This poses a significant challenge to existing communication techniques. Within this context, the integration of near-infrared broadband, tunable, and high-gain luminescent materials into silicon optical circuits or fiber architectures to transmit and modulate light shows enormous potential for advancing next-generation communication techniques. Here, this review provides an overview of the recent breakthroughs in near-infrared luminescent epitaxial/colloidal quantum dots, and metal-active-center-doped materials for broadband optical amplifiers and tunable lasers. We also expound on efforts to enhance the bandwidth and gain of these materials-based amplifiers and lasers, exploring the challenges associate with developing ultra-broadband and high-speed optical communication systems. Additionally, the potential applications in Fifth Generation Fixed Networks, integration with 5G and 6G wireless networks, compensation for current Si electronic based CMOS for high computing capability, and the prospects of these light sources for next-generation optoelectronic devices are discussed.
期刊介绍:
InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.