Szczarba’s twisting cochain is comultiplicative

IF 0.8 4区 数学 Q2 MATHEMATICS
Matthias Franz
{"title":"Szczarba’s twisting cochain is comultiplicative","authors":"Matthias Franz","doi":"10.4310/hha.2024.v26.n1.a18","DOIUrl":null,"url":null,"abstract":"We prove that Szczarba’s twisting cochain is comultiplicative. In particular, the induced map from the cobar construction $\\Omega C(X)$ of the chains on a $1$-reduced simplicial set $X$ to $C(GX)$, the chains on the Kan loop group of $X$, is a quasiisomorphism of $\\operatorname{dg}$ bialgebras. We also show that Szczarba’s twisted shuffle map is a $\\operatorname{dgc}$ map connecting a twisted Cartesian product with the associated twisted tensor product. This gives a natural $\\operatorname{dgc}$ model for fibre bundles.We apply our results to finite covering spaces and to the Serre spectral sequence.","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":"94 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Homology Homotopy and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n1.a18","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that Szczarba’s twisting cochain is comultiplicative. In particular, the induced map from the cobar construction $\Omega C(X)$ of the chains on a $1$-reduced simplicial set $X$ to $C(GX)$, the chains on the Kan loop group of $X$, is a quasiisomorphism of $\operatorname{dg}$ bialgebras. We also show that Szczarba’s twisted shuffle map is a $\operatorname{dgc}$ map connecting a twisted Cartesian product with the associated twisted tensor product. This gives a natural $\operatorname{dgc}$ model for fibre bundles.We apply our results to finite covering spaces and to the Serre spectral sequence.
Szczarba 的扭曲共链具有乘法性
我们证明了Szczarba的扭曲共链是乘法的。特别是,从$1$还原单纯集$X$上的链的科巴构造$\Omega C(X)$到$C(GX)$,即$X$的坎环群上的链的诱导映射,是$\operatorname{dg}$双玻的准同构。我们还证明了斯查尔巴的扭曲洗牌映射是一个连接扭曲笛卡尔积和相关扭曲张量积的\operatorname{dgc}$映射。这就为纤维束提供了一个自然的 $\operatorname{dgc}$ 模型。我们将我们的结果应用于有限覆盖空间和塞尔谱序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: Homology, Homotopy and Applications is a refereed journal which publishes high-quality papers in the general area of homotopy theory and algebraic topology, as well as applications of the ideas and results in this area. This means applications in the broadest possible sense, i.e. applications to other parts of mathematics such as number theory and algebraic geometry, as well as to areas outside of mathematics, such as computer science, physics, and statistics. Homotopy theory is also intended to be interpreted broadly, including algebraic K-theory, model categories, homotopy theory of varieties, etc. We particularly encourage innovative papers which point the way toward new applications of the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信