The stable embedding tower and operadic structures on configuration spaces

Pub Date : 2024-05-01 DOI:10.4310/hha.2024.v26.n1.a15
Connor Malin
{"title":"The stable embedding tower and operadic structures on configuration spaces","authors":"Connor Malin","doi":"10.4310/hha.2024.v26.n1.a15","DOIUrl":null,"url":null,"abstract":"$\\def\\EmbMN{\\operatorname{Emb}(M,N)}\\def\\EM{E_M}\\def\\En{E_n}$ Given smooth manifolds $M$ and $N$, manifold calculus studies the space of embeddings $\\EmbMN$ via the “embedding tower”, which is constructed using the homotopy theory of presheaves on $M$. The same theory allows us to study the stable homotopy type of $\\EmbMN$ via the “stable embedding tower”. By analyzing cubes of framed configuration spaces, we prove that the layers of the stable embedding tower are tangential homotopy invariants of $N$. If $M$ is framed, the moduli space of disks $\\EM$ is intimately connected to both the stable and unstable embedding towers through the $\\En$ operad. The action of $\\En$ on $\\EM$ induces an action of the Poisson operad poisn on the homology of configuration spaces $H_\\ast (F(M,-))$. In order to study this action, we introduce the notion of Poincaré–Koszul operads and modules and show that $\\En$ and $\\EM$ are examples. As an application, we compute the induced action of the Lie operad on $H_\\ast (F(M,-))$ and show it is a homotopy invariant of $M^+$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n1.a15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

$\def\EmbMN{\operatorname{Emb}(M,N)}\def\EM{E_M}\def\En{E_n}$ Given smooth manifolds $M$ and $N$, manifold calculus studies the space of embeddings $\EmbMN$ via the “embedding tower”, which is constructed using the homotopy theory of presheaves on $M$. The same theory allows us to study the stable homotopy type of $\EmbMN$ via the “stable embedding tower”. By analyzing cubes of framed configuration spaces, we prove that the layers of the stable embedding tower are tangential homotopy invariants of $N$. If $M$ is framed, the moduli space of disks $\EM$ is intimately connected to both the stable and unstable embedding towers through the $\En$ operad. The action of $\En$ on $\EM$ induces an action of the Poisson operad poisn on the homology of configuration spaces $H_\ast (F(M,-))$. In order to study this action, we introduce the notion of Poincaré–Koszul operads and modules and show that $\En$ and $\EM$ are examples. As an application, we compute the induced action of the Lie operad on $H_\ast (F(M,-))$ and show it is a homotopy invariant of $M^+$.
分享
查看原文
构型空间上的稳定嵌入塔和运算结构
$def\EmbMN{operatorname{Emb}(M,N)}\def\EM{E_M}\def\En{E_n}$ 给定光滑流形 $M$ 和 $N$,流形微积分通过 "嵌入塔 "来研究嵌入空间 $\EmbMN$ ,而 "嵌入塔 "是用 $M$ 上的预波同调理论构造的。同样的理论允许我们通过 "稳定嵌入塔 "来研究 $\EmbMN$ 的稳定同调类型。通过分析框架配置空间的立方体,我们证明了稳定嵌入塔的层是 $N$ 的切向同调不变式。如果 $M$ 是有框的,那么盘的模空间 $\EM$ 通过 $\En$ 操作数与稳定和不稳定嵌入塔紧密相连。$\En$对$\EM$的作用在配置空间的同调$H_\ast (F(M,-))$上引起了泊松运算符poisn的作用。为了研究这个作用,我们引入了 Poincaré-Koszul 操作数和模块的概念,并证明 $\En$ 和 $\EM$ 就是例子。作为应用,我们计算了Lie操作数对 $H_\ast (F(M,-))$ 的诱导作用,并证明它是 $M^+$ 的同调不变式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信