On functions of bounded mean oscillation with bounded negative part

IF 0.6 3区 数学 Q3 MATHEMATICS
H. Zhao, D. Wang
{"title":"On functions of bounded mean oscillation with bounded negative part","authors":"H. Zhao,&nbsp;D. Wang","doi":"10.1007/s10476-024-00018-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(b\\)</span> be a locally integrable function and <span>\\(\\mathfrak{M}\\)</span> be the bilinear maximal function\n</p><div><div><span>$$\\mathfrak{M}(f,g)(x)=\\sup_{Q\\ni x}\\frac{1}{|Q|}\\int_{Q}|f(y)g(2x-y)|dy.$$</span></div></div><p>\nIn this paper, characterization of the BMO function in terms of commutator <span>\\(\\mathfrak{M}^{(1)}_{b}\\)</span> is established. Also, we obtain the necessary and sufficient conditions for the boundedness of the commutator <span>\\([b, \\mathfrak{M}]_{1}\\)</span>. Moreover, some new characterizations of Lipschitz and non-negative Lipschitz functions are obtained.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-024-00018-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(b\) be a locally integrable function and \(\mathfrak{M}\) be the bilinear maximal function

$$\mathfrak{M}(f,g)(x)=\sup_{Q\ni x}\frac{1}{|Q|}\int_{Q}|f(y)g(2x-y)|dy.$$

In this paper, characterization of the BMO function in terms of commutator \(\mathfrak{M}^{(1)}_{b}\) is established. Also, we obtain the necessary and sufficient conditions for the boundedness of the commutator \([b, \mathfrak{M}]_{1}\). Moreover, some new characterizations of Lipschitz and non-negative Lipschitz functions are obtained.

关于具有有界负部分的有界平均振荡函数
设 \(b\) 是局部可积分函数,\(\mathfrak{M}\) 是双线性最大函数$$\mathfrak{M}(f,g)(x)=\sup_{Q\ni x}\frac{1}{|Q}\int_{Q}|f(y)g(2x-y)|dy.本文建立了换元器 \(\mathfrak{M}^{(1)}_{b}\)对 BMO 函数的描述。同时,我们还得到了换元 \([b, \mathfrak{M}]_{1}\) 有界的必要条件和充分条件。此外,我们还得到了一些关于 Lipschitz 函数和非负 Lipschitz 函数的新特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信