Nur Alyaa Kamal, Noor Hidayah Pungot, Siti Kamilah Che Soh, Nazrizawati Ahmad Tajuddin
{"title":"Facile and green hydrothermal synthesis of MgAl/NiAl/ZnAl layered double hydroxide nanosheets: a physiochemical comparison","authors":"Nur Alyaa Kamal, Noor Hidayah Pungot, Siti Kamilah Che Soh, Nazrizawati Ahmad Tajuddin","doi":"10.1515/pac-2024-0014","DOIUrl":null,"url":null,"abstract":"Layered double hydroxide (LDH) exhibits a remarkable trait referred to as the ‘memory effect,’ demonstrating its capacity to reconstruct its layered structure from calcined oxides through hydrothermal treatment. Its uniqueness has garnered significant interest from researchers in both industrial and academic domains. Various methods have been utilized to synthesize LDH but most LDH studies still utilize alkali precipitants which might taint the final LDH product. Thus, in this study, layered double hydroxides involving MgAl/NiAl/ZnAl were synthesized via an alkali-free hydrothermal approach in which the formed precipitates of LDH were thermally destroyed via calcination at 450 °C before undergoing a rehydration treatment at 110 °C for 24 h to restore its original structure. Particularly, the physiochemical properties of MgAl/NiAl/ZnAl LDH have been undertaken by multiple techniques such as Powder X-ray Diffraction (PXRD), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscope (FESEM) and Fourier-transform infrared spectroscopy (FTIR). The resultant products exhibited exceptional crystallinity, accompanied by notably larger crystallite sizes and crystallinity index, particularly post-hydrothermal treatment. Among the fresh and calcined products studied, those subjected to HTM (4:1) treatment demonstrated the highest specific surface area and crystallinity surpassing both the fresh and calcined samples. In essence, this research showcased how utilizing the hydrothermal approach resulted in the most substantial increase in crystallite size and specific surface area.","PeriodicalId":20911,"journal":{"name":"Pure and Applied Chemistry","volume":"8 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/pac-2024-0014","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Layered double hydroxide (LDH) exhibits a remarkable trait referred to as the ‘memory effect,’ demonstrating its capacity to reconstruct its layered structure from calcined oxides through hydrothermal treatment. Its uniqueness has garnered significant interest from researchers in both industrial and academic domains. Various methods have been utilized to synthesize LDH but most LDH studies still utilize alkali precipitants which might taint the final LDH product. Thus, in this study, layered double hydroxides involving MgAl/NiAl/ZnAl were synthesized via an alkali-free hydrothermal approach in which the formed precipitates of LDH were thermally destroyed via calcination at 450 °C before undergoing a rehydration treatment at 110 °C for 24 h to restore its original structure. Particularly, the physiochemical properties of MgAl/NiAl/ZnAl LDH have been undertaken by multiple techniques such as Powder X-ray Diffraction (PXRD), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscope (FESEM) and Fourier-transform infrared spectroscopy (FTIR). The resultant products exhibited exceptional crystallinity, accompanied by notably larger crystallite sizes and crystallinity index, particularly post-hydrothermal treatment. Among the fresh and calcined products studied, those subjected to HTM (4:1) treatment demonstrated the highest specific surface area and crystallinity surpassing both the fresh and calcined samples. In essence, this research showcased how utilizing the hydrothermal approach resulted in the most substantial increase in crystallite size and specific surface area.
期刊介绍:
Pure and Applied Chemistry is the official monthly Journal of IUPAC, with responsibility for publishing works arising from those international scientific events and projects that are sponsored and undertaken by the Union. The policy is to publish highly topical and credible works at the forefront of all aspects of pure and applied chemistry, and the attendant goal is to promote widespread acceptance of the Journal as an authoritative and indispensable holding in academic and institutional libraries.