{"title":"Comparison of Different Parallel Transport Methods for the Study of Deformations in 3D Cardiac Data","authors":"Paolo Piras, Nicolas Guigui, Valerio Varano","doi":"10.1007/s10851-024-01186-x","DOIUrl":null,"url":null,"abstract":"<p>Comparing the deformations of different beating hearts is a challenging operation. As in clinics the impaired condition is often recognized upon (local and global) deformation parameters, the particular nature of heart deformation during one beat can be compared among different individuals in the same ordination space more effectively if initial inter-individual form (shape + size) differences are filtered out. This is even more true if the shape of cardiac trajectory itself is under consideration. This need is satisfied by applying a geometric machinery named “parallel transport” in the field of differential geometry. In recent years several parallel transport methods have been applied to cardiological data acquired via echocardiography, CT scan or magnetic resonance. Concomitantly, some efforts were made for comparing different parallel transport algorithms applied to a variety of toy examples and real deformational data. Here we face the problem of comparing the heavily used LDDMM parallel transport with the recently proposed Riemannian “TPS space” in the context of the deformation of the right ventricle. Using local tensors diagnostics and global energy-based and shape distance-based parameters, we explored the maintenance of original deformations in transported data in four systo-diastolic deformations belonging to one healthy subject and three individuals affected by tetralogy of Fallot, atrial septal defect and pulmonary hypertension. We also do the same in a larger dataset relative to the left ventricle of 82 heathly subjects and 21 patients affected by hypertrophic cardiomyopathy. We also do the same in a larger dataset relative to the left ventricle of 82 heathly subjects and 21 patients affected by hypertrophic cardiomyopathy. In particular, we contrasted the TPS space with classic LDDMM and a modified LDDMM able to manage spherical differences. Our results point toward a neat superiority of TPS space over classic LDDMM. The modified LDDMM performs similarly as it maintains better the chosen diagnostics.</p>","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":"145 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Imaging and Vision","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10851-024-01186-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Comparing the deformations of different beating hearts is a challenging operation. As in clinics the impaired condition is often recognized upon (local and global) deformation parameters, the particular nature of heart deformation during one beat can be compared among different individuals in the same ordination space more effectively if initial inter-individual form (shape + size) differences are filtered out. This is even more true if the shape of cardiac trajectory itself is under consideration. This need is satisfied by applying a geometric machinery named “parallel transport” in the field of differential geometry. In recent years several parallel transport methods have been applied to cardiological data acquired via echocardiography, CT scan or magnetic resonance. Concomitantly, some efforts were made for comparing different parallel transport algorithms applied to a variety of toy examples and real deformational data. Here we face the problem of comparing the heavily used LDDMM parallel transport with the recently proposed Riemannian “TPS space” in the context of the deformation of the right ventricle. Using local tensors diagnostics and global energy-based and shape distance-based parameters, we explored the maintenance of original deformations in transported data in four systo-diastolic deformations belonging to one healthy subject and three individuals affected by tetralogy of Fallot, atrial septal defect and pulmonary hypertension. We also do the same in a larger dataset relative to the left ventricle of 82 heathly subjects and 21 patients affected by hypertrophic cardiomyopathy. We also do the same in a larger dataset relative to the left ventricle of 82 heathly subjects and 21 patients affected by hypertrophic cardiomyopathy. In particular, we contrasted the TPS space with classic LDDMM and a modified LDDMM able to manage spherical differences. Our results point toward a neat superiority of TPS space over classic LDDMM. The modified LDDMM performs similarly as it maintains better the chosen diagnostics.
期刊介绍:
The Journal of Mathematical Imaging and Vision is a technical journal publishing important new developments in mathematical imaging. The journal publishes research articles, invited papers, and expository articles.
Current developments in new image processing hardware, the advent of multisensor data fusion, and rapid advances in vision research have led to an explosive growth in the interdisciplinary field of imaging science. This growth has resulted in the development of highly sophisticated mathematical models and theories. The journal emphasizes the role of mathematics as a rigorous basis for imaging science. This provides a sound alternative to present journals in this area. Contributions are judged on the basis of mathematical content. Articles may be physically speculative but need to be mathematically sound. Emphasis is placed on innovative or established mathematical techniques applied to vision and imaging problems in a novel way, as well as new developments and problems in mathematics arising from these applications.
The scope of the journal includes:
computational models of vision; imaging algebra and mathematical morphology
mathematical methods in reconstruction, compactification, and coding
filter theory
probabilistic, statistical, geometric, topological, and fractal techniques and models in imaging science
inverse optics
wave theory.
Specific application areas of interest include, but are not limited to:
all aspects of image formation and representation
medical, biological, industrial, geophysical, astronomical and military imaging
image analysis and image understanding
parallel and distributed computing
computer vision architecture design.