Bifurcation Structure of Interval Maps with Orbits Homoclinic to a Saddle-Focus

Pub Date : 2024-04-30 DOI:10.1007/s11253-024-02294-y
Carter Hinsley, James Scully, Andrey L. Shilnikov
{"title":"Bifurcation Structure of Interval Maps with Orbits Homoclinic to a Saddle-Focus","authors":"Carter Hinsley, James Scully, Andrey L. Shilnikov","doi":"10.1007/s11253-024-02294-y","DOIUrl":null,"url":null,"abstract":"<p>We study homoclinic bifurcations in an interval map associated with a saddle-focus of (2, 1)-type in ℤ<sub>2</sub>-symmetric systems. Our study of this map reveals a homoclinic structure of the saddle-focus, with bifurcation unfolding guided by the codimension-two Belyakov bifurcation. We consider three parameters of the map corresponding to the saddle quantity, splitting parameter, and the focal frequency of the smooth saddle-focus in a neighborhood of homoclinic bifurcations. We symbolically encode the dynamics of the map in order to find stability windows and locate homoclinic bifurcation sets in a computationally efficient manner. The organization and possible shapes of homoclinic bifurcation curves in the parameter space are examined, taking into account the symmetry and discontinuity of the map. Sufficient conditions for stability and local symbolic constancy of the map are presented. This study provides insights into the structure of homoclinic bifurcations of the saddle-focus map, furthering comprehension of low-dimensional chaotic systems.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02294-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study homoclinic bifurcations in an interval map associated with a saddle-focus of (2, 1)-type in ℤ2-symmetric systems. Our study of this map reveals a homoclinic structure of the saddle-focus, with bifurcation unfolding guided by the codimension-two Belyakov bifurcation. We consider three parameters of the map corresponding to the saddle quantity, splitting parameter, and the focal frequency of the smooth saddle-focus in a neighborhood of homoclinic bifurcations. We symbolically encode the dynamics of the map in order to find stability windows and locate homoclinic bifurcation sets in a computationally efficient manner. The organization and possible shapes of homoclinic bifurcation curves in the parameter space are examined, taking into account the symmetry and discontinuity of the map. Sufficient conditions for stability and local symbolic constancy of the map are presented. This study provides insights into the structure of homoclinic bifurcations of the saddle-focus map, furthering comprehension of low-dimensional chaotic systems.

分享
查看原文
轨道与鞍焦同轴的区间图的分岔结构
我们研究了与ℤ2对称系统中(2, 1)型鞍焦相关的区间映射中的同室分岔。我们对这一映射的研究揭示了鞍焦的同室结构,其分岔展开由标度为 2 的别利亚科夫分岔引导。我们考虑了该映射的三个参数,它们分别对应于同轴分岔邻域中光滑鞍焦的鞍量、分裂参数和焦点频率。我们用符号对该图的动态进行编码,以便找到稳定窗口,并以计算效率高的方式定位同轴分叉集。考虑到地图的对称性和不连续性,我们研究了参数空间中同向分岔曲线的组织和可能形状。提出了该图的稳定性和局部符号恒定性的充分条件。这项研究深入揭示了鞍焦图的同轴分岔结构,进一步加深了对低维混沌系统的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信