Dynamics of One-Dimensional Maps and Gurtin–Maccamy’s Population Model. Part I. Asymptotically Constant Solutions

Pub Date : 2024-04-30 DOI:10.1007/s11253-024-02296-w
Franco Herrera, Sergei Trofimchuk
{"title":"Dynamics of One-Dimensional Maps and Gurtin–Maccamy’s Population Model. Part I. Asymptotically Constant Solutions","authors":"Franco Herrera, Sergei Trofimchuk","doi":"10.1007/s11253-024-02296-w","DOIUrl":null,"url":null,"abstract":"<p>Motivated by the recent work by Ma and Magal [Proc. Amer. Math. Soc. (2021); https://doi.org/10.1090/proc/15629] on the global stability property of the Gurtin–MacCamy’s population model, we consider a family of scalar nonlinear convolution equations with unimodal nonlinearities. In particular, we relate the Ivanov and Sharkovsky analysis of singularly perturbed delay differential equations in [https://doi.org/10.1007/978-3-642-61243-5_5] to the asymptotic behavior of solutions of the Gurtin–MacCamy’s system. According to the classification proposed in [https://doi.org/10.1007/978-3-642-61243-5_5], we can distinguish three fundamental kinds of continuous solutions of our equations, namely, solutions of the asymptotically constant type, relaxation type, and turbulent type. We present various conditions assuring that all solutions belong to the first of these three classes. In the setting of unimodal convolution equations, these conditions suggest a generalized version of the famous Wright’s conjecture.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02296-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by the recent work by Ma and Magal [Proc. Amer. Math. Soc. (2021); https://doi.org/10.1090/proc/15629] on the global stability property of the Gurtin–MacCamy’s population model, we consider a family of scalar nonlinear convolution equations with unimodal nonlinearities. In particular, we relate the Ivanov and Sharkovsky analysis of singularly perturbed delay differential equations in [https://doi.org/10.1007/978-3-642-61243-5_5] to the asymptotic behavior of solutions of the Gurtin–MacCamy’s system. According to the classification proposed in [https://doi.org/10.1007/978-3-642-61243-5_5], we can distinguish three fundamental kinds of continuous solutions of our equations, namely, solutions of the asymptotically constant type, relaxation type, and turbulent type. We present various conditions assuring that all solutions belong to the first of these three classes. In the setting of unimodal convolution equations, these conditions suggest a generalized version of the famous Wright’s conjecture.

分享
查看原文
一维地图动力学与古尔廷-马卡米人口模型。第一部分:渐近恒定解
受 Ma 和 Magal [Proc. Amer. Math. Soc. (2021); https://doi.org/10.1090/proc/15629] 最近关于 Gurtin-MacCamy 人口模型全局稳定性的研究成果的启发,我们考虑了一族具有单模态非线性的标量非线性卷积方程。特别是,我们将 [https://doi.org/10.1007/978-3-642-61243-5_5] 中对奇异扰动延迟微分方程的 Ivanov 和 Sharkovsky 分析与 Gurtin-MacCamy 系统解的渐近行为联系起来。根据 [https://doi.org/10.1007/978-3-642-61243-5_5] 中提出的分类,我们可以将方程的连续解区分为三种基本类型,即渐近恒定型解、弛豫型解和湍流型解。我们提出了各种条件,确保所有解都属于这三类解中的第一类。在单模态卷积方程的背景下,这些条件提出了著名的赖特猜想的广义版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信