On the Balanced Pantograph Equation of Mixed Type

Pub Date : 2024-04-30 DOI:10.1007/s11253-024-02295-x
G. Derfel, B. van Brunt
{"title":"On the Balanced Pantograph Equation of Mixed Type","authors":"G. Derfel, B. van Brunt","doi":"10.1007/s11253-024-02295-x","DOIUrl":null,"url":null,"abstract":"<p>We consider the balanced pantograph equation (BPE) <span>\\(y{\\prime}\\left(x\\right)+y\\left(x\\right)={\\sum }_{k=1}^{m}{p}_{k}y\\left({a}_{k}x\\right)\\)</span><i>,</i> where <i>a</i><sub><i>k</i></sub><i>, p</i><sub><i>k</i></sub><i> &gt;</i> 0 and <span>\\({\\sum }_{k=1}^{m}{p}_{k}=1\\)</span>. It is known that if <span>\\(K={\\sum }_{k=1}^{m}{p}_{k}{\\text{ln}}{a}_{k}\\le 0\\)</span> then, under mild technical conditions, the BPE does not have bounded solutions that are not constant, whereas for <i>K &gt;</i> 0 these solutions exist. In the present paper, we deal with a BPE of <i>mixed type</i>, i.e., <i>a</i><sub>1</sub> <i>&lt;</i> 1 <i>&lt; a</i><sub><i>m</i></sub><i>,</i> and prove that, in this case, the BPE has a nonconstant solution <i>y</i> and that <i>y</i>(<i>x</i>) ~ <i>cx</i><sup><i>σ</i></sup> as <i>x</i> → ∞<i>,</i> where <i>c &gt;</i> 0 and <i>σ</i> is the unique positive root of the characteristic equation <span>\\(P\\left(s\\right)=1-\\sum_{k=1}^{m} {p}_{k}{a}_{k}^{-s}=0\\)</span><i>.</i> We also show that <i>y</i> is unique (up to a multiplicative constant) among the solutions of the BPE that decay to zero as <i>x</i> → ∞<i>.</i></p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02295-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the balanced pantograph equation (BPE) \(y{\prime}\left(x\right)+y\left(x\right)={\sum }_{k=1}^{m}{p}_{k}y\left({a}_{k}x\right)\), where ak, pk > 0 and \({\sum }_{k=1}^{m}{p}_{k}=1\). It is known that if \(K={\sum }_{k=1}^{m}{p}_{k}{\text{ln}}{a}_{k}\le 0\) then, under mild technical conditions, the BPE does not have bounded solutions that are not constant, whereas for K > 0 these solutions exist. In the present paper, we deal with a BPE of mixed type, i.e., a1 < 1 < am, and prove that, in this case, the BPE has a nonconstant solution y and that y(x) ~ cxσ as x → ∞, where c > 0 and σ is the unique positive root of the characteristic equation \(P\left(s\right)=1-\sum_{k=1}^{m} {p}_{k}{a}_{k}^{-s}=0\). We also show that y is unique (up to a multiplicative constant) among the solutions of the BPE that decay to zero as x → ∞.

分享
查看原文
论混合型平衡受电弓方程
我们考虑平衡受电弓方程(BPE)\(y{\prime}\left(x\right)+y\left(x\right)={\sum }_{k=1}^{m}{p}_{k}y\left({a}_{k}x\right)\), 其中 ak, pk > 0 和 \({\sum }_{k=1}^{m}{p}_{k}=1\).众所周知,如果 \(K={\sum }_{k=1}^{m}{p}_{k}{text\{ln}}{a}_{k}\le 0\) 那么,在温和的技术条件下,BPE 不存在非恒定的有界解,而对于 K > 0,这些解是存在的。在本文中,我们将处理混合类型的 BPE,即 a1 < 1 < am,并证明在这种情况下,BPE 有一个非恒定解 y,并且 y(x) ~ cxσ as x → ∞,其中 c > 0 和 σ 是特征方程 \(P\left(s\right)=1-\sum_{k=1}^{m} 的唯一正根。{p}_{k}{a}_{k}^{-s}=0\).我们还证明,在随着 x → ∞ 衰减为零的 BPE 解中,y 是唯一的(直到一个乘法常数)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信