On the Balanced Pantograph Equation of Mixed Type

IF 0.5 4区 数学 Q3 MATHEMATICS
G. Derfel, B. van Brunt
{"title":"On the Balanced Pantograph Equation of Mixed Type","authors":"G. Derfel, B. van Brunt","doi":"10.1007/s11253-024-02295-x","DOIUrl":null,"url":null,"abstract":"<p>We consider the balanced pantograph equation (BPE) <span>\\(y{\\prime}\\left(x\\right)+y\\left(x\\right)={\\sum }_{k=1}^{m}{p}_{k}y\\left({a}_{k}x\\right)\\)</span><i>,</i> where <i>a</i><sub><i>k</i></sub><i>, p</i><sub><i>k</i></sub><i> &gt;</i> 0 and <span>\\({\\sum }_{k=1}^{m}{p}_{k}=1\\)</span>. It is known that if <span>\\(K={\\sum }_{k=1}^{m}{p}_{k}{\\text{ln}}{a}_{k}\\le 0\\)</span> then, under mild technical conditions, the BPE does not have bounded solutions that are not constant, whereas for <i>K &gt;</i> 0 these solutions exist. In the present paper, we deal with a BPE of <i>mixed type</i>, i.e., <i>a</i><sub>1</sub> <i>&lt;</i> 1 <i>&lt; a</i><sub><i>m</i></sub><i>,</i> and prove that, in this case, the BPE has a nonconstant solution <i>y</i> and that <i>y</i>(<i>x</i>) ~ <i>cx</i><sup><i>σ</i></sup> as <i>x</i> → ∞<i>,</i> where <i>c &gt;</i> 0 and <i>σ</i> is the unique positive root of the characteristic equation <span>\\(P\\left(s\\right)=1-\\sum_{k=1}^{m} {p}_{k}{a}_{k}^{-s}=0\\)</span><i>.</i> We also show that <i>y</i> is unique (up to a multiplicative constant) among the solutions of the BPE that decay to zero as <i>x</i> → ∞<i>.</i></p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"4 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02295-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the balanced pantograph equation (BPE) \(y{\prime}\left(x\right)+y\left(x\right)={\sum }_{k=1}^{m}{p}_{k}y\left({a}_{k}x\right)\), where ak, pk > 0 and \({\sum }_{k=1}^{m}{p}_{k}=1\). It is known that if \(K={\sum }_{k=1}^{m}{p}_{k}{\text{ln}}{a}_{k}\le 0\) then, under mild technical conditions, the BPE does not have bounded solutions that are not constant, whereas for K > 0 these solutions exist. In the present paper, we deal with a BPE of mixed type, i.e., a1 < 1 < am, and prove that, in this case, the BPE has a nonconstant solution y and that y(x) ~ cxσ as x → ∞, where c > 0 and σ is the unique positive root of the characteristic equation \(P\left(s\right)=1-\sum_{k=1}^{m} {p}_{k}{a}_{k}^{-s}=0\). We also show that y is unique (up to a multiplicative constant) among the solutions of the BPE that decay to zero as x → ∞.

论混合型平衡受电弓方程
我们考虑平衡受电弓方程(BPE)\(y{\prime}\left(x\right)+y\left(x\right)={\sum }_{k=1}^{m}{p}_{k}y\left({a}_{k}x\right)\), 其中 ak, pk > 0 和 \({\sum }_{k=1}^{m}{p}_{k}=1\).众所周知,如果 \(K={\sum }_{k=1}^{m}{p}_{k}{text\{ln}}{a}_{k}\le 0\) 那么,在温和的技术条件下,BPE 不存在非恒定的有界解,而对于 K > 0,这些解是存在的。在本文中,我们将处理混合类型的 BPE,即 a1 < 1 < am,并证明在这种情况下,BPE 有一个非恒定解 y,并且 y(x) ~ cxσ as x → ∞,其中 c > 0 和 σ 是特征方程 \(P\left(s\right)=1-\sum_{k=1}^{m} 的唯一正根。{p}_{k}{a}_{k}^{-s}=0\).我们还证明,在随着 x → ∞ 衰减为零的 BPE 解中,y 是唯一的(直到一个乘法常数)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ukrainian Mathematical Journal
Ukrainian Mathematical Journal MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
20.00%
发文量
107
审稿时长
4-8 weeks
期刊介绍: Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries. Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信