Capacities and Density Conditions in Metric Spaces

IF 1 3区 数学 Q1 MATHEMATICS
Javier Canto, Lizaveta Ihnatsyeva, Juha Lehrbäck, Antti V. Vähäkangas
{"title":"Capacities and Density Conditions in Metric Spaces","authors":"Javier Canto, Lizaveta Ihnatsyeva, Juha Lehrbäck, Antti V. Vähäkangas","doi":"10.1007/s11118-024-10137-5","DOIUrl":null,"url":null,"abstract":"<p>We examine the relations between different capacities in the setting of a metric measure space. First, we prove a comparability result for the Riesz <span>\\((\\beta ,p)\\)</span>-capacity and the relative Hajłasz <span>\\((\\beta ,p)\\)</span>-capacity, for <span>\\(1&lt;p&lt;\\infty \\)</span> and <span>\\(0&lt;\\beta \\le 1\\)</span>, under a suitable kernel estimate related to the Riesz potential. Then we show that in geodesic spaces the corresponding capacity density conditions are equivalent even without assuming the kernel estimate. In the last part of the paper, we compare the relative Hajłasz (1, <i>p</i>)-capacity to the relative variational <i>p</i>-capacity.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"26 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10137-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We examine the relations between different capacities in the setting of a metric measure space. First, we prove a comparability result for the Riesz \((\beta ,p)\)-capacity and the relative Hajłasz \((\beta ,p)\)-capacity, for \(1<p<\infty \) and \(0<\beta \le 1\), under a suitable kernel estimate related to the Riesz potential. Then we show that in geodesic spaces the corresponding capacity density conditions are equivalent even without assuming the kernel estimate. In the last part of the paper, we compare the relative Hajłasz (1, p)-capacity to the relative variational p-capacity.

公制空间中的容量和密度条件
我们研究了在度量空间中不同容量之间的关系。首先,我们证明了在(1<p<infty \)和(0<beta \le 1\)下,在与Riesz势相关的合适的核估计下,Riesz \((beta ,p))-容量和相对Hajłasz \((beta ,p))-容量的可比性结果。然后我们证明,在测地空间中,即使不假设核估计,相应的容量密度条件也是等价的。在本文的最后一部分,我们将相对 Hajłasz (1, p) 容量与相对变分 p 容量进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Potential Analysis
Potential Analysis 数学-数学
CiteScore
2.20
自引率
9.10%
发文量
83
审稿时长
>12 weeks
期刊介绍: The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信