Adelia Evangelista, Christian Acal, Ana M. Aguilera, Annalina Sarra, Tonio Di Battista, Sergio Palermi
{"title":"High dimensional variable selection through group Lasso for multiple function‐on‐function linear regression: A case study in PM10 monitoring","authors":"Adelia Evangelista, Christian Acal, Ana M. Aguilera, Annalina Sarra, Tonio Di Battista, Sergio Palermi","doi":"10.1002/env.2852","DOIUrl":null,"url":null,"abstract":"SummaryAnalyzing the effect of chemical and local meteorological variables over the behaviour in concentrations in the Abruzzo region (Italy), with the objective of forecasting and controlling air quality, motivates the current work. Given that the available data are curves that represent the day‐to‐day variations, a multiple function‐on‐function linear regression (MFFLR) model is considered. By assuming the Karhunen‐Loève expansion, MFFLR model can be reduced to a classical linear regression model for each principal component of the functional response in terms of all principal components (PCs) of the functional predictors. In this sense, a regularization approach for functional principal component regression based on the merge of functional data analysis with group Lasso is proposed. This novel methodology allows to estimate the model and, simultaneously, select those relevant functional predictors with the functional response, where each functional independent variable is represented by a group of input variables derived by the PCs.","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"25 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/env.2852","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
SummaryAnalyzing the effect of chemical and local meteorological variables over the behaviour in concentrations in the Abruzzo region (Italy), with the objective of forecasting and controlling air quality, motivates the current work. Given that the available data are curves that represent the day‐to‐day variations, a multiple function‐on‐function linear regression (MFFLR) model is considered. By assuming the Karhunen‐Loève expansion, MFFLR model can be reduced to a classical linear regression model for each principal component of the functional response in terms of all principal components (PCs) of the functional predictors. In this sense, a regularization approach for functional principal component regression based on the merge of functional data analysis with group Lasso is proposed. This novel methodology allows to estimate the model and, simultaneously, select those relevant functional predictors with the functional response, where each functional independent variable is represented by a group of input variables derived by the PCs.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.