Investigation of shallow water waves near the coast or in lake environments via the KdV-Calogero-Bogoyavlenskii-Schiff equation

Peng-Fei Han, Yi Zhang
{"title":"Investigation of shallow water waves near the coast or in lake environments via the KdV-Calogero-Bogoyavlenskii-Schiff equation","authors":"Peng-Fei Han, Yi Zhang","doi":"arxiv-2404.18697","DOIUrl":null,"url":null,"abstract":"Shallow water waves phenomena in nature attract the attention of scholars and\nplay an important role in fields such as tsunamis, tidal waves, solitary waves,\nand hydraulic engineering. Hereby, for the shallow water waves phenomena in\nvarious natural environments, we study the KdV-Calogero-Bogoyavlenskii-Schiff\n(KdV-CBS) equation. Based on the Bell polynomial theory, the B{\\\"a}cklund\ntransformation, Lax pair and infinite conservation laws of the KdV-CBS equation\nare derived, and it is proved that it is completely integrable in Lax pair\nsense. Various types of mixed solutions are constructed by using a combination\nof Homoclinic test method and Mathematica symbolic computations. These findings\nhave important significance for the discipline, offering vital insights into\nthe intricate dynamics of the KdV-CBS equation. We hope that our research\nresults could help the researchers understand the nonlinear complex phenomena\nof the shallow water waves in oceans, rivers and coastal areas.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.18697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Shallow water waves phenomena in nature attract the attention of scholars and play an important role in fields such as tsunamis, tidal waves, solitary waves, and hydraulic engineering. Hereby, for the shallow water waves phenomena in various natural environments, we study the KdV-Calogero-Bogoyavlenskii-Schiff (KdV-CBS) equation. Based on the Bell polynomial theory, the B{\"a}cklund transformation, Lax pair and infinite conservation laws of the KdV-CBS equation are derived, and it is proved that it is completely integrable in Lax pair sense. Various types of mixed solutions are constructed by using a combination of Homoclinic test method and Mathematica symbolic computations. These findings have important significance for the discipline, offering vital insights into the intricate dynamics of the KdV-CBS equation. We hope that our research results could help the researchers understand the nonlinear complex phenomena of the shallow water waves in oceans, rivers and coastal areas.
通过 KdV-Calogero-Bogoyavlenskii-Schiff 方程研究海岸附近或湖泊环境中的浅水波
自然界中的浅水波现象引起了学者们的关注,并在海啸、潮汐波、孤波和水利工程等领域发挥着重要作用。因此,针对各种自然环境中的浅水波现象,我们研究了 KdV-Calogero-Bogoyavlenskii-Schiff (KdV-CBS)方程。基于贝尔多项式理论,推导了 KdV-CBS 方程的 B{"a}cklund 变换、拉克斯对和无限守恒定律,并证明其在拉克斯对意义上是完全可积分的。通过均变检验法和 Mathematica 符号计算相结合的方法,构建了各种类型的混合解。这些发现为 KdV-CBS 方程错综复杂的动力学提供了重要见解,对该学科具有重要意义。我们希望我们的研究成果能够帮助研究人员理解海洋、河流和沿海地区浅水波浪的非线性复杂现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信