Non-disjoint strong external difference families can have any number of sets

IF 0.5 4区 数学 Q3 MATHEMATICS
Sophie Huczynska, Siaw-Lynn Ng
{"title":"Non-disjoint strong external difference families can have any number of sets","authors":"Sophie Huczynska,&nbsp;Siaw-Lynn Ng","doi":"10.1007/s00013-024-01982-2","DOIUrl":null,"url":null,"abstract":"<div><p>Strong external difference families (SEDFs) are much-studied combinatorial objects motivated by an information security application. A well-known conjecture states that only one abelian SEDF with more than 2 sets exists. We show that if the disjointness condition is replaced by non-disjointness, then abelian SEDFs can be constructed with more than 2 sets (indeed any number of sets). We demonstrate that the non-disjoint analogue has striking differences to, and connections with, the classical SEDF and arises naturally via another coding application.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"122 6","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-01982-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-01982-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Strong external difference families (SEDFs) are much-studied combinatorial objects motivated by an information security application. A well-known conjecture states that only one abelian SEDF with more than 2 sets exists. We show that if the disjointness condition is replaced by non-disjointness, then abelian SEDFs can be constructed with more than 2 sets (indeed any number of sets). We demonstrate that the non-disjoint analogue has striking differences to, and connections with, the classical SEDF and arises naturally via another coding application.

非相交强外差族可以有任意数量的集合
强外差族(SEDFs)是一种因信息安全应用而被广泛研究的组合对象。一个众所周知的猜想指出,只有一个具有 2 个以上集合的无边 SEDF 存在。我们证明,如果将不相交条件替换为不相交条件,那么就可以构造出具有 2 个以上集合(实际上是任何数量的集合)的非等边 SEDF。我们证明了非相交类似物与经典 SEDF 的显著区别和联系,并通过另一种编码应用自然地产生了非相交类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信