Richard Aron, Verónica Dimant, Luis C. García-Lirola, Manuel Maestre
{"title":"Linearization of holomorphic Lipschitz functions","authors":"Richard Aron, Verónica Dimant, Luis C. García-Lirola, Manuel Maestre","doi":"10.1002/mana.202300527","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math> be complex Banach spaces with <span></span><math>\n <semantics>\n <msub>\n <mi>B</mi>\n <mi>X</mi>\n </msub>\n <annotation>$B_X$</annotation>\n </semantics></math> denoting the open unit ball of <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>. This paper studies various aspects of the <i>holomorphic Lipschitz space</i> <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <msub>\n <mi>L</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>X</mi>\n </msub>\n <mo>,</mo>\n <mi>Y</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {H}L_0(B_X,Y)$</annotation>\n </semantics></math>, endowed with the Lipschitz norm. This space consists of the functions in the intersection of the sets <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>Lip</mo>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>X</mi>\n </msub>\n <mo>,</mo>\n <mi>Y</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{Lip}_0(B_X,Y)$</annotation>\n </semantics></math> of Lipschitz mappings and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mi>∞</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>X</mi>\n </msub>\n <mo>,</mo>\n <mi>Y</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {H}^\\infty (B_X,Y)$</annotation>\n </semantics></math> of bounded holomorphic mappings, from <span></span><math>\n <semantics>\n <msub>\n <mi>B</mi>\n <mi>X</mi>\n </msub>\n <annotation>$B_X$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math>. Thanks to the Dixmier–Ng theorem, <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <msub>\n <mi>L</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>X</mi>\n </msub>\n <mo>,</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {H}L_0(B_X, \\mathbb {C})$</annotation>\n </semantics></math> is indeed a dual space, whose predual <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>X</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {G}_0(B_X)$</annotation>\n </semantics></math> shares linearization properties with both the Lipschitz-free space and Dineen–Mujica predual of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mi>∞</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>X</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {H}^\\infty (B_X)$</annotation>\n </semantics></math>. We explore the similarities and differences between these spaces, and combine techniques to study the properties of the space of holomorphic Lipschitz functions. In particular, we get that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>X</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {G}_0(B_X)$</annotation>\n </semantics></math> contains a 1-complemented subspace isometric to <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> and that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {G}_0(X)$</annotation>\n </semantics></math> has the (metric) approximation property whenever <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> has it. We also analyze when <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>X</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {G}_0(B_X)$</annotation>\n </semantics></math> is a subspace of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>Y</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {G}_0(B_Y)$</annotation>\n </semantics></math>, and we obtain an analog of Godefroy's characterization of functionals with a unique norm preserving extension in the holomorphic Lipschitz context.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300527","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let and be complex Banach spaces with denoting the open unit ball of . This paper studies various aspects of the holomorphic Lipschitz space , endowed with the Lipschitz norm. This space consists of the functions in the intersection of the sets of Lipschitz mappings and of bounded holomorphic mappings, from to . Thanks to the Dixmier–Ng theorem, is indeed a dual space, whose predual shares linearization properties with both the Lipschitz-free space and Dineen–Mujica predual of . We explore the similarities and differences between these spaces, and combine techniques to study the properties of the space of holomorphic Lipschitz functions. In particular, we get that contains a 1-complemented subspace isometric to and that has the (metric) approximation property whenever has it. We also analyze when is a subspace of , and we obtain an analog of Godefroy's characterization of functionals with a unique norm preserving extension in the holomorphic Lipschitz context.