Real spin bordism and orientations of topological $\mathrm{K}$-theory

Zachary Halladay, Yigal Kamel
{"title":"Real spin bordism and orientations of topological $\\mathrm{K}$-theory","authors":"Zachary Halladay, Yigal Kamel","doi":"arxiv-2405.00963","DOIUrl":null,"url":null,"abstract":"We construct a commutative orthogonal $C_2$-ring spectrum,\n$\\mathrm{MSpin}^c_{\\mathbb{R}}$, along with a $C_2$-$E_{\\infty}$-orientation\n$\\mathrm{MSpin}^c_{\\mathbb{R}} \\to \\mathrm{KU}_{\\mathbb{R}}$ of Atiyah's Real\nK-theory. Further, we define $E_{\\infty}$-maps $\\mathrm{MSpin} \\to\n(\\mathrm{MSpin}^c_{\\mathbb{R}})^{C_2}$ and $\\mathrm{MU}_{\\mathbb{R}} \\to\n\\mathrm{MSpin}^c_{\\mathbb{R}}$, which are used to recover the three well-known\norientations of topological $\\mathrm{K}$-theory, $\\mathrm{MSpin}^c \\to\n\\mathrm{KU}$, $\\mathrm{MSpin} \\to \\mathrm{KO}$, and $\\mathrm{MU}_{\\mathbb{R}}\n\\to \\mathrm{KU}_{\\mathbb{R}}$, from the map $\\mathrm{MSpin}^c_{\\mathbb{R}} \\to\n\\mathrm{KU}_{\\mathbb{R}}$. We also show that the integrality of the\n$\\hat{A}$-genus on spin manifolds provides an obstruction for the fixed points\n$(\\mathrm{MSpin}^c_{\\mathbb{R}})^{C_2}$ to be equivalent to $\\mathrm{MSpin}$,\nusing the Mackey functor structure of\n$\\underline{\\pi}_*\\mathrm{MSpin}^c_{\\mathbb{R}}$. In particular, the usual map\n$\\mathrm{MSpin} \\to \\mathrm{MSpin}^c$ does not arise as the inclusion of fixed\npoints for any $C_2$-$E_{\\infty}$-ring spectrum.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"125 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.00963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We construct a commutative orthogonal $C_2$-ring spectrum, $\mathrm{MSpin}^c_{\mathbb{R}}$, along with a $C_2$-$E_{\infty}$-orientation $\mathrm{MSpin}^c_{\mathbb{R}} \to \mathrm{KU}_{\mathbb{R}}$ of Atiyah's Real K-theory. Further, we define $E_{\infty}$-maps $\mathrm{MSpin} \to (\mathrm{MSpin}^c_{\mathbb{R}})^{C_2}$ and $\mathrm{MU}_{\mathbb{R}} \to \mathrm{MSpin}^c_{\mathbb{R}}$, which are used to recover the three well-known orientations of topological $\mathrm{K}$-theory, $\mathrm{MSpin}^c \to \mathrm{KU}$, $\mathrm{MSpin} \to \mathrm{KO}$, and $\mathrm{MU}_{\mathbb{R}} \to \mathrm{KU}_{\mathbb{R}}$, from the map $\mathrm{MSpin}^c_{\mathbb{R}} \to \mathrm{KU}_{\mathbb{R}}$. We also show that the integrality of the $\hat{A}$-genus on spin manifolds provides an obstruction for the fixed points $(\mathrm{MSpin}^c_{\mathbb{R}})^{C_2}$ to be equivalent to $\mathrm{MSpin}$, using the Mackey functor structure of $\underline{\pi}_*\mathrm{MSpin}^c_{\mathbb{R}}$. In particular, the usual map $\mathrm{MSpin} \to \mathrm{MSpin}^c$ does not arise as the inclusion of fixed points for any $C_2$-$E_{\infty}$-ring spectrum.
拓扑$mathrm{K}$理论的实自旋边界和定向
我们构建了一个交换正交$C_2$环谱,$mathrm{MSpin}^c_{math/bb{R}}$,以及一个$C_2$-$E_{infty}$-orientation$mathrm{MSpin}^c_{math/bb{R}}$。\到阿蒂亚实科理论的 \mathrm{KU}_{mathbb{R}}$。此外,我们定义 $E_{\infty}$ 映射 $\mathrm{MSpin}\to(\mathrm{MSpin}^c_{\mathbb{R}})^{C_2}$ and $\mathrm{MU}_{\mathbb{R}}用来恢复拓扑 $\mathrm{K}$ 理论的三个著名定向:$\mathrm{MSpin}^c \to\mathrm{KU}$ 、$\mathrm{MSpin}^c \to\mathrm{KU}$ 、$\mathrm{MSpin}^c \to\mathrm{KU}$ 和$\mathrm{MSpin}^c \to\mathrm{KU}$ 。\從映射 $\mathrm{MSpin}^c_{\mathbb{R}} 到 $\mathrm{MU}_{\mathbb{R}} 到 $\mathrm{KU}_{\mathbb{R}}$, 从映射 $\mathrm{MSpin}^c_{\mathbb{R}}\to\mathrm{KU}_{\mathbb{R}}$.我们还利用$underline{pi}_*\mathrm{MSpin}^c_{mathbb{R}} 的麦基函子结构证明了自旋流形上$\hat{A}$-元的积分性为定点$(\mathrm{MSpin}^c_{mathbb{R}})^{C_2}$等价于$\mathrm{MSpin}$提供了障碍。特别是,通常的映射 $\mathrm{MSpin}\到 \mathrm{MSpin}^c$的通常映射不会作为任何$C_2$-$E_{\infty}$环谱的定点包含而出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信